This Week’s Predictions | |||||
Game | Prediction | Winner | Correct | Correct Votes | Correct Percent |
---|---|---|---|---|---|
1 | Philadelphia Eagles | Philadelphia Eagles | Yes | 45 | 0.5294 |
Individual Results | |||||||||||||||||||||||||||
Week 22 | |||||||||||||||||||||||||||
Name | Weekly # Correct | Percent | Weeks Picked | Season Percent | Adj Season Percent | Season Trend | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 | Week 10 | Week 11 | Week 12 | Week 13 | Week 14 | Week 15 | Week 16 | Week 17 | Week 18 | Week 19 | Week 20 | Week 21 | Week 22 | ||||||
Brittany Pillar | NA | NA | NA | NA | NA | 10 | 12 | NA | NA | 10 | 11 | 10 | 16 | 11 | 13 | 12 | 13 | 7 | 4 | 2 | 1 | 1 | 1 | 15 | 0.7557 | 0.5152 | |
Robert Cunningham | 14 | 9 | 10 | 12 | 8 | 12 | 11 | 11 | 12 | 9 | 11 | 10 | NA | 10 | 13 | 12 | 14 | 12 | 3 | 2 | 0 | 1 | 1 | 21 | 0.7286 | 0.6955 | |
Marc Agne | 14 | 7 | 9 | 13 | 6 | 13 | 10 | 9 | 12 | 10 | 10 | 7 | 16 | 9 | 13 | 12 | 13 | 9 | 5 | 3 | 0 | 1 | 1 | 22 | 0.7053 | 0.7053 | |
Jeremy Stieler | 11 | 9 | 6 | 11 | 6 | 13 | 11 | 11 | 11 | 9 | 9 | 8 | 16 | 10 | 14 | 13 | 11 | 10 | 5 | 3 | 0 | 1 | 1 | 22 | 0.6947 | 0.6947 | |
Christopher Sims | 11 | 9 | 10 | 8 | 7 | 10 | 12 | 14 | 11 | 9 | 8 | 9 | 16 | 10 | 11 | 11 | 13 | 10 | 4 | 4 | 0 | 1 | 1 | 22 | 0.6947 | 0.6947 | |
Ryan Wiggins | NA | NA | NA | NA | NA | NA | NA | NA | 11 | NA | NA | NA | NA | NA | NA | 10 | NA | NA | NA | NA | NA | 1 | 1 | 3 | 0.6875 | 0.0938 | |
Bruce Williams | 13 | 9 | 10 | 8 | 9 | 13 | 12 | 10 | NA | 10 | 10 | 9 | 14 | 9 | 12 | 11 | 12 | 6 | 3 | 2 | 2 | 1 | 1 | 21 | 0.6852 | 0.6541 | |
Nicole Dike | 13 | 7 | 8 | 10 | 7 | 10 | 10 | 12 | 10 | 9 | 10 | 8 | 15 | 9 | 13 | 13 | 15 | 8 | 4 | 3 | 0 | 1 | 1 | 22 | 0.6842 | 0.6842 | |
Thomas Brenstuhl | 9 | 8 | NA | 6 | 7 | 9 | 10 | 13 | 11 | 9 | 13 | 9 | 15 | 11 | 14 | NA | 12 | 8 | NA | 3 | 1 | 1 | 1 | 19 | 0.6842 | 0.5909 | |
Edward Ford | 9 | 7 | 6 | 10 | 5 | 10 | 10 | 13 | 11 | 9 | 12 | 10 | 14 | 11 | 14 | 11 | 12 | 11 | 4 | 2 | 2 | 1 | 1 | 22 | 0.6807 | 0.6807 | |
Keven Talbert | 10 | 7 | 9 | 11 | 9 | 14 | 13 | 9 | 9 | 11 | 10 | 10 | 12 | 10 | 10 | 12 | NA | 10 | 3 | 2 | 1 | 1 | 1 | 21 | 0.6803 | 0.6494 | |
Nicholas Cinco | 12 | 8 | NA | NA | 6 | 11 | 11 | 12 | 11 | 11 | 8 | 9 | 12 | 8 | 14 | 11 | 10 | 10 | 5 | 2 | 0 | 1 | 1 | 20 | 0.6798 | 0.6180 | |
David Dupree | 13 | 8 | 10 | 9 | 7 | 11 | 11 | 11 | 12 | NA | 9 | 8 | 13 | 10 | 12 | 12 | 13 | 9 | 4 | 1 | 0 | 1 | 1 | 21 | 0.6790 | 0.6481 | |
Kevin Buettner | 12 | 8 | 8 | 10 | 7 | 11 | 10 | 9 | 10 | 10 | 10 | 8 | 16 | 10 | 13 | 11 | NA | 10 | 4 | 3 | 1 | 1 | 1 | 21 | 0.6766 | 0.6458 | |
Brian Hollmann | NA | NA | NA | 8 | 8 | 10 | 10 | 11 | 9 | 8 | 12 | 8 | 16 | 11 | 12 | 10 | NA | 7 | 4 | 3 | 1 | 1 | 1 | 18 | 0.6742 | 0.5516 | |
Ramar Williams | 10 | 8 | 7 | 11 | 8 | 11 | 11 | 10 | 8 | 8 | 9 | 8 | 13 | 10 | 12 | 14 | 14 | 11 | 4 | NA | 1 | 1 | 1 | 21 | 0.6726 | 0.6420 | |
Zechariah Ziebarth | 8 | 8 | 8 | 10 | 5 | 10 | 10 | 11 | 11 | NA | 12 | 8 | 15 | 10 | 16 | 10 | NA | 9 | 5 | 3 | 0 | 1 | 1 | 20 | 0.6667 | 0.6061 | |
Ryan Cvik | 10 | 8 | 9 | 11 | 9 | 11 | 11 | 13 | 10 | 7 | 7 | 9 | 12 | 10 | 13 | 12 | 11 | 9 | 4 | 3 | 0 | 1 | 1 | 22 | 0.6667 | 0.6667 | |
Earl Dixon | 10 | 9 | 6 | 9 | 9 | NA | 11 | 10 | 9 | 9 | 10 | 10 | 15 | 11 | 10 | 12 | NA | NA | 4 | NA | NA | 1 | 1 | 17 | 0.6652 | 0.5140 | |
Antonio Mitchell | 11 | 7 | 8 | 9 | 9 | 11 | 10 | 11 | 10 | 8 | 8 | 9 | 13 | 9 | 13 | 10 | 13 | 12 | 4 | 2 | 0 | 1 | 1 | 22 | 0.6596 | 0.6596 | |
George Hall | 12 | NA | 8 | NA | NA | NA | NA | NA | NA | 10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 1 | 4 | 0.6596 | 0.1199 | |
Karen Richardson | 10 | 9 | 7 | 9 | 11 | 8 | 8 | 12 | 8 | 10 | 9 | 9 | 13 | 10 | 14 | 12 | NA | 9 | 4 | 3 | NA | 1 | 1 | 20 | 0.6592 | 0.5993 | |
Jonathon Leslein | 10 | 8 | 7 | 10 | 8 | 12 | 10 | 10 | 8 | 10 | 7 | 10 | 12 | 10 | 13 | 12 | NA | 12 | 5 | 2 | 0 | 1 | 1 | 21 | 0.6580 | 0.6281 | |
Montee Brown | 10 | 6 | 8 | 7 | 8 | 14 | 11 | 10 | 8 | 10 | 10 | 9 | 14 | 8 | 13 | 11 | 11 | 10 | 4 | 2 | 2 | 1 | 1 | 22 | 0.6561 | 0.6561 | |
Michelle Fraterrigo | 11 | 8 | 9 | 9 | 7 | 11 | 12 | 12 | 11 | 8 | 8 | 10 | NA | 9 | NA | 11 | NA | NA | NA | 3 | 1 | 1 | 1 | 17 | 0.6558 | 0.5068 | |
Richard Beeghley | 11 | 7 | 6 | 11 | 7 | 14 | 10 | 10 | 10 | 8 | 9 | 9 | 14 | 11 | 12 | 11 | 11 | 9 | 3 | 2 | 0 | 1 | 1 | 22 | 0.6526 | 0.6526 | |
Steward Hogans | 10 | 7 | 10 | NA | NA | NA | NA | 10 | 13 | 8 | 8 | 9 | 11 | 8 | 11 | 12 | NA | 12 | 3 | 2 | 2 | 1 | 1 | 17 | 0.6524 | 0.5041 | |
Daniel Major | 8 | 10 | 11 | 6 | 8 | 11 | NA | 10 | 10 | 10 | 11 | 9 | 14 | 11 | 9 | NA | 8 | NA | 4 | 3 | 1 | 1 | 1 | 19 | 0.6513 | 0.5625 | |
Michael Branson | 9 | 8 | 8 | 9 | 8 | 11 | 9 | 11 | 10 | 9 | 11 | 7 | 14 | 9 | 13 | 10 | 11 | NA | 4 | 2 | 1 | 1 | 1 | 21 | 0.6506 | 0.6210 | |
Nicholas Nguyen | 11 | 8 | 5 | 8 | 7 | 12 | 11 | 9 | 10 | 9 | 10 | 9 | NA | 9 | 16 | 11 | 12 | NA | 3 | 3 | 0 | 1 | 1 | 20 | 0.6482 | 0.5893 | |
Jeffrey Rudderforth | 11 | 11 | 10 | 9 | 6 | 7 | 10 | 11 | 12 | 9 | 8 | 8 | 14 | 9 | 11 | 12 | NA | 9 | 4 | 2 | 0 | 1 | 1 | 21 | 0.6468 | 0.6174 | |
Nahir Shepard | 11 | 8 | 10 | 8 | 6 | 12 | 8 | 12 | 9 | 9 | 11 | 10 | 13 | 9 | NA | 9 | 9 | 11 | NA | NA | NA | 1 | 1 | 18 | 0.6459 | 0.5285 | |
Darvin Graham | 12 | 7 | 6 | 9 | 8 | 11 | 9 | NA | 10 | 9 | 9 | 10 | NA | 11 | 14 | NA | 12 | 11 | 4 | 0 | 0 | 1 | 1 | 19 | 0.6456 | 0.5576 | |
Brian Patterson | 11 | 6 | 9 | 9 | 6 | NA | 9 | 13 | NA | 9 | 12 | 7 | 14 | 9 | 13 | 10 | 12 | 8 | 3 | 3 | 1 | 1 | 1 | 20 | 0.6445 | 0.5859 | |
Walter Archambo | 8 | 8 | 7 | 9 | 6 | 12 | 11 | 11 | 12 | 10 | 10 | 9 | 15 | 9 | 9 | 9 | 12 | 8 | 3 | 3 | 1 | 1 | 1 | 22 | 0.6421 | 0.6421 | |
Rachel Follo | 15 | 8 | 6 | 6 | 9 | 7 | 10 | 11 | 9 | 9 | 10 | 7 | 13 | 11 | 11 | 8 | 13 | 10 | 4 | 3 | 1 | 1 | 1 | 22 | 0.6386 | 0.6386 | |
Rachel Follo | 15 | 8 | 6 | 6 | 9 | 7 | 10 | 11 | 9 | 9 | 10 | 7 | 13 | 11 | 11 | 8 | 13 | 10 | 4 | 3 | 1 | 1 | 1 | 22 | 0.6386 | 0.6386 | |
Anthony Brinson | 11 | 7 | NA | 9 | 10 | 11 | 9 | 12 | 6 | NA | NA | 8 | 14 | 10 | NA | 11 | 11 | 8 | 4 | 1 | 0 | 1 | 1 | 18 | 0.6356 | 0.5200 | |
Wayne Schofield | 7 | 5 | 9 | 5 | 7 | 7 | 11 | 11 | 10 | 8 | 13 | 10 | 13 | 11 | NA | 13 | 12 | 9 | 5 | 2 | 0 | 1 | 1 | 21 | 0.6283 | 0.5997 | |
Kristen White | 14 | 7 | 9 | 9 | 8 | 9 | 9 | 8 | 8 | 9 | 9 | 8 | 13 | 8 | 14 | 9 | 10 | 9 | NA | 3 | 0 | 1 | 1 | 21 | 0.6237 | 0.5954 | |
Terry Hardison | 13 | 8 | 6 | 7 | 4 | 11 | 10 | 12 | 11 | 9 | 11 | 7 | NA | NA | 11 | 10 | 13 | 8 | 4 | 2 | 1 | 1 | 1 | 20 | 0.6211 | 0.5646 | |
Ryan Shipley | 11 | 6 | 10 | 8 | 5 | 9 | 11 | NA | 10 | NA | 9 | 10 | NA | NA | 10 | 9 | NA | 9 | NA | NA | 2 | 1 | 1 | 15 | 0.6000 | 0.4091 | |
Donald Park | 9 | NA | 6 | NA | NA | 10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 1 | 4 | 0.5532 | 0.1006 | |
Akilah Gamble | 9 | NA | 12 | 9 | 6 | 8 | 12 | 6 | NA | 8 | NA | 7 | NA | NA | 3 | 6 | NA | NA | NA | 4 | 1 | 1 | 1 | 14 | 0.5318 | 0.3384 | |
Andrew Gray | 5 | 8 | 9 | 7 | NA | NA | 7 | 9 | 7 | 11 | 8 | 6 | 5 | 10 | 9 | NA | 9 | 8 | NA | 1 | 1 | 1 | 1 | 18 | 0.5149 | 0.4213 | |
Aubrey Conn | 13 | 7 | 10 | 9 | 8 | 12 | 12 | 9 | 13 | 9 | 10 | 11 | 16 | 10 | 12 | 12 | 15 | 12 | 3 | 3 | 2 | 0 | 0 | 22 | 0.7298 | 0.7298 | |
Michael Pacifico | 13 | 8 | 7 | 9 | 9 | 12 | 12 | 10 | 14 | 9 | 11 | 10 | 14 | 10 | 12 | 12 | 14 | 12 | 3 | 3 | 0 | 0 | 0 | 22 | 0.7158 | 0.7158 | |
Robert Gelo | 14 | 8 | 9 | 9 | 8 | 13 | 13 | 11 | 12 | 10 | 10 | 9 | 12 | 11 | 11 | 13 | 14 | 10 | 2 | 2 | 2 | 0 | 0 | 22 | 0.7123 | 0.7123 | |
Chris Papageorge | 14 | 8 | 10 | 11 | 8 | 12 | 12 | 12 | 11 | 8 | 9 | 7 | 15 | 7 | 11 | 11 | 15 | 12 | 4 | 3 | 1 | 0 | 0 | 22 | 0.7053 | 0.7053 | |
Heather Kohler | 12 | NA | 7 | 12 | 9 | 11 | NA | 12 | NA | 8 | 9 | 10 | 14 | NA | NA | NA | NA | NA | 4 | NA | NA | 0 | 0 | 12 | 0.6923 | 0.3776 | |
Randy Dick | 11 | 7 | 8 | 8 | 9 | 14 | 10 | 10 | 13 | 11 | 10 | 9 | 14 | 10 | 12 | 12 | 13 | 10 | 3 | 2 | 1 | 0 | 0 | 22 | 0.6912 | 0.6912 | |
Jason Schattel | 13 | 7 | 6 | 9 | 10 | 11 | 9 | 10 | 11 | 9 | 10 | 10 | 13 | 9 | 13 | 12 | 14 | 12 | 4 | 3 | 2 | 0 | 0 | 22 | 0.6912 | 0.6912 | |
Erik Neumann | 12 | 8 | 9 | 9 | 7 | 13 | 10 | 11 | 12 | 9 | 10 | NA | NA | 10 | 15 | 11 | NA | 12 | 4 | 2 | 1 | 0 | 0 | 19 | 0.6875 | 0.5938 | |
Anthony Bloss | 13 | 8 | 8 | 11 | 8 | 13 | 11 | 11 | 9 | 7 | 10 | 9 | 14 | 9 | 13 | 12 | 14 | 9 | 3 | 3 | 0 | 0 | 0 | 22 | 0.6842 | 0.6842 | |
Bryson Scott | 10 | 9 | 7 | NA | 7 | 12 | 11 | 12 | 10 | 9 | NA | 9 | 15 | 10 | 10 | NA | 12 | NA | NA | 3 | 2 | 0 | 0 | 17 | 0.6820 | 0.5270 | |
William Schouviller | 12 | 7 | 9 | 9 | 11 | 13 | 10 | 9 | NA | 7 | 11 | 8 | 15 | 11 | 13 | 11 | 11 | 11 | 3 | 2 | 1 | 0 | 0 | 21 | 0.6815 | 0.6505 | |
Kevin Kehoe | 13 | 7 | 9 | 10 | 8 | 13 | 12 | 11 | 9 | 8 | 8 | 8 | 13 | 9 | 14 | 12 | 12 | 10 | 4 | 2 | 2 | 0 | 0 | 22 | 0.6807 | 0.6807 | |
Pablo Burgosramos | 9 | 5 | 8 | 9 | 5 | 14 | 12 | 12 | 12 | 7 | 11 | 10 | 13 | 10 | 14 | 10 | 14 | 9 | 5 | NA | 2 | 0 | 0 | 21 | 0.6797 | 0.6488 | |
Daniel Baller | 14 | 6 | 9 | 8 | 7 | 9 | 10 | 12 | 10 | 10 | 10 | 10 | 15 | 10 | 12 | 11 | 12 | 9 | 3 | 3 | 2 | 0 | 0 | 22 | 0.6737 | 0.6737 | |
Stephen Bush | 9 | 7 | 4 | 10 | 9 | 13 | 13 | 9 | 10 | 10 | 8 | 9 | 16 | 10 | 13 | 13 | 13 | 8 | 4 | 2 | 2 | 0 | 0 | 22 | 0.6737 | 0.6737 | |
George Sweet | 13 | 9 | 6 | 10 | 11 | 9 | 11 | 11 | 12 | 7 | 10 | 11 | 12 | 9 | 12 | 12 | 10 | 8 | 4 | 3 | 1 | 0 | 0 | 22 | 0.6702 | 0.6702 | |
Shawn Carden | 10 | 9 | 10 | 10 | 8 | 11 | 10 | 11 | 11 | 9 | 8 | 8 | 15 | 9 | 14 | 11 | NA | 8 | 4 | 2 | 2 | 0 | 0 | 21 | 0.6691 | 0.6387 | |
Rafael Torres | 12 | 9 | 8 | 7 | 8 | 10 | 12 | 10 | 12 | 11 | 11 | 7 | 12 | 10 | NA | 11 | NA | 11 | 4 | 3 | 0 | 0 | 0 | 20 | 0.6640 | 0.6036 | |
David Plate | 10 | 8 | 8 | 8 | 9 | NA | NA | NA | 13 | 10 | 8 | 9 | 14 | NA | 12 | 11 | 12 | 10 | 4 | 3 | 1 | 0 | 0 | 18 | 0.6608 | 0.5407 | |
Paul Seitz | 11 | 9 | 9 | NA | 8 | 10 | 11 | NA | NA | 7 | 8 | 8 | 14 | 7 | 14 | NA | 13 | 8 | 4 | 4 | 1 | 0 | 0 | 18 | 0.6577 | 0.5381 | |
Cade Martinez | 10 | 7 | 8 | 8 | 6 | 11 | 11 | 9 | 10 | 10 | 9 | 8 | 15 | 11 | 13 | 11 | 14 | 8 | 4 | 4 | 0 | 0 | 0 | 22 | 0.6561 | 0.6561 | |
Jennifer Arty | 10 | 7 | 9 | 7 | 7 | 12 | 8 | 12 | 11 | 9 | 10 | 8 | 15 | 9 | 13 | 10 | NA | NA | NA | NA | 2 | 0 | 0 | 18 | 0.6543 | 0.5353 | |
Michael Moss | 13 | 8 | 8 | 8 | 10 | 13 | 8 | 9 | 11 | 9 | 10 | 6 | 11 | 10 | 12 | 12 | 13 | 9 | 3 | 2 | 1 | 0 | 0 | 22 | 0.6526 | 0.6526 | |
Christopher Mulcahy | 11 | 9 | 7 | 8 | NA | 8 | 9 | 9 | 10 | 9 | 10 | 9 | 13 | 11 | 12 | 10 | 12 | 9 | 5 | 3 | 2 | 0 | 0 | 21 | 0.6494 | 0.6199 | |
Kamar Morgan | 12 | 6 | 8 | 5 | 8 | 12 | 9 | 12 | 10 | 8 | 10 | 10 | 16 | 10 | NA | 9 | 12 | 9 | 5 | 2 | 1 | 0 | 0 | 21 | 0.6468 | 0.6174 | |
Jeffrey Zornes | 9 | 11 | 6 | 8 | 7 | 10 | 9 | 11 | 9 | 10 | NA | 8 | 15 | 11 | 11 | 9 | 13 | 10 | 5 | 2 | 1 | 0 | 0 | 21 | 0.6458 | 0.6164 | |
David Humes | 10 | 9 | 8 | 11 | 5 | 8 | 12 | 8 | 12 | 11 | 11 | 6 | 14 | 9 | 9 | 12 | 13 | 9 | 4 | 2 | 1 | 0 | 0 | 22 | 0.6456 | 0.6456 | |
Michael Moore | 11 | 6 | 7 | 7 | 8 | 12 | NA | 9 | 9 | NA | 12 | 9 | 16 | 10 | 13 | 11 | NA | 8 | NA | 2 | 1 | 0 | 0 | 18 | 0.6453 | 0.5280 | |
Louie Renew | 9 | 8 | 12 | 4 | 10 | 8 | 8 | 11 | 11 | 8 | 10 | 9 | NA | 10 | 10 | 13 | 13 | 9 | 5 | 3 | 2 | 0 | 0 | 21 | 0.6431 | 0.6139 | |
Jonathan Smith | 11 | NA | 4 | 10 | 7 | NA | 8 | 11 | 10 | 7 | 9 | 7 | 15 | 9 | 15 | 13 | 11 | 8 | 3 | 4 | 1 | 0 | 0 | 20 | 0.6392 | 0.5811 | |
Bunnaro Sun | 12 | 5 | 8 | 11 | 6 | 8 | 9 | 9 | 12 | 8 | 8 | NA | 14 | NA | 12 | 13 | 13 | NA | 5 | 2 | 0 | 0 | 0 | 19 | 0.6379 | 0.5509 | |
Cheryl Brown | 11 | 6 | 9 | 8 | 8 | 10 | NA | 9 | 8 | 10 | 11 | 9 | 14 | 10 | 10 | 12 | NA | 10 | 3 | 2 | 2 | 0 | 0 | 20 | 0.6378 | 0.5798 | |
James Small | 12 | NA | 9 | 10 | 8 | 10 | 9 | 9 | 10 | 10 | NA | 6 | 11 | 8 | 13 | 11 | 13 | 7 | 4 | 2 | 0 | 0 | 0 | 20 | 0.6353 | 0.5775 | |
Trevor Macgavin | 12 | 7 | 10 | 8 | 8 | 8 | 9 | 7 | 10 | 7 | 11 | 10 | 16 | 9 | 12 | 12 | 11 | 8 | 3 | 1 | 1 | 0 | 0 | 22 | 0.6316 | 0.6316 | |
Jared Kaanga | 11 | 9 | 9 | 8 | 7 | 10 | 9 | 11 | 13 | 9 | 9 | 7 | NA | 11 | 11 | 10 | NA | 8 | 3 | 1 | 0 | 0 | 0 | 20 | 0.6166 | 0.5605 | |
Melissa Printup | 8 | 9 | 9 | 6 | 10 | 10 | 10 | 10 | 7 | 10 | 9 | 8 | 13 | 7 | 13 | 11 | 11 | 8 | 2 | 2 | 2 | 0 | 0 | 22 | 0.6140 | 0.6140 | |
Marcus Evans | 11 | 8 | NA | 8 | 7 | 10 | 7 | 9 | 10 | 6 | 11 | 8 | 12 | 8 | 13 | 9 | 11 | 10 | 3 | 2 | 0 | 0 | 0 | 21 | 0.6059 | 0.5784 | |
Kenneth Nielsen | 13 | 8 | 7 | NA | 8 | 9 | 11 | 10 | NA | NA | NA | NA | 11 | NA | NA | 8 | 12 | NA | NA | 1 | 0 | 0 | 0 | 13 | 0.6049 | 0.3574 | |
Steven Webster | 7 | 7 | 9 | 6 | 7 | 9 | NA | 11 | NA | 8 | 10 | 8 | NA | 8 | 12 | 12 | NA | NA | 4 | 4 | 1 | 0 | 0 | 17 | 0.5942 | 0.4592 | |
Brenton Jones | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 1 | 0 | 0 | 3 | 0.4286 | 0.0584 | |
Clayton Grimes | 14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.8750 | 0.0398 | |
Tanaysa Henderson | NA | NA | NA | NA | NA | 12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.8571 | 0.0390 | |
Matthew Blair | NA | NA | NA | NA | NA | 11 | 10 | 12 | 10 | 9 | 11 | 8 | 15 | 11 | 15 | 10 | NA | NA | NA | NA | NA | NA | 0 | 11 | 0.7531 | 0.3766 | |
Wallace Savage | 12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.7500 | 0.0341 | |
Brian Holder | 12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.7500 | 0.0341 | |
Sandra Carter | 12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.7500 | 0.0341 | |
Michael Linder | 11 | 9 | 9 | NA | NA | 12 | 10 | 11 | 10 | NA | 11 | NA | 13 | NA | 14 | 13 | 13 | NA | NA | NA | NA | NA | 0 | 12 | 0.7312 | 0.3988 | |
Steven Maisonneuve | NA | NA | NA | NA | 11 | 10 | 11 | 12 | 11 | 8 | NA | 10 | 12 | 9 | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 9 | 0.7231 | 0.2958 | |
Chester Todd | 13 | 8 | 8 | 8 | 9 | 13 | 13 | 10 | 9 | 9 | 11 | 9 | 15 | 10 | 12 | 13 | 14 | NA | 3 | 2 | NA | NA | 0 | 19 | 0.7105 | 0.6136 | |
Nathan Brown | 13 | 8 | 9 | 11 | 9 | NA | 10 | 11 | 14 | 9 | 10 | 10 | 14 | 10 | 12 | 12 | NA | NA | 4 | NA | 0 | NA | 0 | 17 | 0.7094 | 0.5482 | |
Patrick Tynan | 12 | 8 | 7 | 9 | 8 | 12 | NA | 12 | 12 | 10 | 10 | 6 | 16 | 11 | 13 | NA | 12 | 12 | NA | NA | NA | NA | 0 | 16 | 0.7054 | 0.5130 | |
Randolph Tidd | 11 | 7 | 8 | 12 | NA | 12 | 11 | 12 | 13 | 9 | 11 | 7 | 16 | 10 | 11 | 12 | NA | 8 | NA | NA | NA | NA | 0 | 16 | 0.7025 | 0.5109 | |
Gregory Brown | 15 | 7 | 6 | 9 | 8 | 12 | 9 | 9 | 13 | 9 | 10 | 9 | 15 | 12 | 13 | 12 | NA | NA | NA | NA | NA | NA | 0 | 16 | 0.7000 | 0.5091 | |
Jeremy Krammes | 12 | NA | NA | NA | NA | NA | NA | 10 | NA | 10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 3 | 0.6957 | 0.0949 | |
Jeremy Mounce | 12 | 8 | 8 | NA | 10 | 12 | NA | NA | NA | 10 | 10 | NA | NA | NA | 14 | NA | NA | NA | NA | 2 | NA | NA | 0 | 9 | 0.6935 | 0.2837 | |
Bradley Hobson | 13 | 7 | 8 | 11 | 7 | 13 | 10 | 10 | 11 | 8 | NA | 10 | 16 | 11 | 14 | 9 | 14 | 10 | 3 | 2 | 0 | NA | 0 | 20 | 0.6926 | 0.6296 | |
Terrence Lee | 11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 2 | 0.6897 | 0.0627 | |
Daniel Gray | 11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.6875 | 0.0312 | |
Karen Coleman | 13 | 6 | NA | 11 | 9 | 9 | 10 | 9 | 11 | 8 | 9 | 9 | 14 | 10 | 14 | 11 | NA | NA | NA | NA | NA | NA | 0 | 15 | 0.6830 | 0.4657 | |
Heather Ellenberger | 13 | 8 | 7 | 8 | 7 | 12 | 11 | 11 | 13 | 9 | 9 | 10 | 14 | 9 | 14 | 11 | NA | 9 | 4 | 2 | 2 | NA | 0 | 20 | 0.6828 | 0.6207 | |
Jennifer Bouland | 13 | 8 | 10 | 7 | 8 | 11 | 10 | 11 | 9 | 9 | 12 | 10 | NA | 11 | 11 | NA | 13 | 10 | NA | 3 | NA | NA | 0 | 17 | 0.6803 | 0.5257 | |
Matthew Schultz | 13 | 10 | 9 | 8 | 9 | 9 | 9 | 12 | 11 | 8 | 11 | 10 | 14 | 9 | 11 | 9 | 11 | NA | NA | NA | NA | NA | 0 | 17 | 0.6758 | 0.5222 | |
Philip Driskill | 12 | 7 | 8 | 10 | 8 | NA | 13 | 11 | 10 | NA | NA | 9 | 14 | 10 | NA | NA | NA | 10 | NA | 3 | NA | NA | 0 | 13 | 0.6720 | 0.3971 | |
Scott Lefton | 10 | 8 | 8 | 7 | 7 | 11 | 11 | 10 | 11 | 10 | 10 | 8 | 15 | 10 | 14 | 11 | NA | NA | 4 | 3 | 1 | NA | 0 | 19 | 0.6706 | 0.5792 | |
Robert Sokol | 10 | 8 | NA | NA | 6 | 9 | 9 | 13 | 12 | 9 | 10 | 8 | 14 | 10 | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 12 | 0.6705 | 0.3657 | |
Brayant Rivera | 10 | 8 | 9 | 8 | 6 | 13 | 11 | 10 | 12 | 9 | 11 | 10 | 13 | 10 | 14 | 8 | 10 | 10 | 4 | NA | NA | NA | 0 | 19 | 0.6691 | 0.5779 | |
Darryle Sellers | 11 | 11 | 6 | 8 | 9 | 11 | 9 | 10 | 12 | 9 | 12 | 7 | 15 | 9 | NA | 12 | NA | 9 | NA | 3 | NA | NA | 0 | 17 | 0.6680 | 0.5162 | |
Travis Delagardelle | 11 | 12 | 10 | 8 | 6 | 11 | 12 | 11 | 11 | 9 | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 11 | 0.6627 | 0.3314 | |
Daniel Halse | 12 | 6 | 8 | 10 | 7 | 13 | 9 | 11 | 11 | 11 | NA | 8 | 14 | 9 | 12 | 12 | NA | 7 | NA | NA | NA | NA | 0 | 16 | 0.6612 | 0.4809 | |
Shaun Dahl | 14 | 7 | 9 | 11 | 10 | 10 | 10 | 8 | 9 | 11 | 8 | 11 | 12 | 11 | 12 | 8 | NA | 8 | NA | NA | NA | NA | 0 | 17 | 0.6602 | 0.5102 | |
Noah Gosswiller | 8 | 7 | NA | 10 | 8 | NA | 10 | 11 | 10 | 10 | 10 | 8 | NA | 9 | 14 | 14 | NA | NA | 3 | NA | 1 | NA | 0 | 15 | 0.6584 | 0.4489 | |
Ryan Baum | 14 | 4 | 9 | 10 | 9 | NA | 10 | 10 | 11 | 10 | NA | 8 | 14 | 8 | NA | 12 | NA | NA | NA | NA | NA | NA | 0 | 13 | 0.6582 | 0.3889 | |
George Mancini | 11 | 8 | 6 | NA | 8 | 6 | 12 | NA | 11 | 9 | 11 | 10 | 13 | 11 | NA | 12 | NA | 10 | NA | 2 | 0 | NA | 0 | 16 | 0.6542 | 0.4758 | |
Clevante Granville | 9 | 11 | NA | NA | 5 | 11 | 11 | 9 | 10 | 11 | 9 | 10 | NA | 8 | 13 | 9 | 11 | NA | 3 | 3 | 0 | NA | 0 | 17 | 0.6500 | 0.5023 | |
Pamela Augustine | 14 | 9 | 9 | NA | 7 | 11 | 9 | NA | 10 | NA | 10 | 9 | 14 | 9 | 10 | 10 | NA | 8 | 3 | 2 | 0 | NA | 0 | 17 | 0.6486 | 0.5012 | |
George Brown | 14 | 7 | 8 | 7 | 6 | 11 | 10 | 12 | 9 | 12 | 11 | 8 | 12 | 11 | 10 | 7 | 12 | 10 | 3 | 2 | 2 | NA | 0 | 21 | 0.6479 | 0.6185 | |
Brandon Parks | 12 | 6 | 9 | 9 | 6 | 13 | NA | NA | 12 | 10 | 10 | 6 | NA | 8 | 12 | 9 | 13 | NA | 4 | NA | NA | NA | 0 | 15 | 0.6465 | 0.4408 | |
Joshua Tracey | 12 | 5 | 8 | 6 | 7 | NA | 9 | 13 | 10 | 7 | 10 | 9 | 16 | 9 | 13 | 11 | NA | NA | NA | NA | NA | NA | 0 | 15 | 0.6416 | 0.4375 | |
Vincent Scannelli | 11 | 7 | 7 | 11 | 8 | 8 | 11 | 12 | 9 | 8 | 9 | 7 | 12 | NA | 11 | 13 | 12 | 11 | 4 | 2 | 0 | NA | 0 | 20 | 0.6384 | 0.5804 | |
Jason Jackson | 12 | 7 | 5 | 6 | 5 | 12 | 9 | 11 | 10 | 10 | 12 | 9 | NA | 10 | 13 | 12 | 13 | 11 | 2 | 1 | 1 | NA | 0 | 20 | 0.6381 | 0.5801 | |
Thomas Mccoy | 10 | 7 | 6 | 8 | 9 | 11 | 11 | 10 | 12 | 10 | 10 | 8 | 13 | 9 | 11 | 10 | 10 | 8 | NA | NA | NA | NA | 0 | 18 | 0.6360 | 0.5204 | |
Paul Presti | 12 | 8 | 9 | 12 | 7 | 11 | 8 | 10 | NA | 10 | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 10 | 0.6358 | 0.2890 | |
Amy Asberry | 11 | 8 | 6 | 10 | NA | 12 | 9 | NA | 9 | 8 | NA | NA | 13 | 9 | 11 | NA | NA | NA | NA | NA | NA | NA | 0 | 11 | 0.6347 | 0.3174 | |
Tara Bridgett | 11 | 8 | 8 | 8 | NA | 9 | NA | 10 | 10 | NA | NA | NA | 15 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 8 | 0.6320 | 0.2298 | |
Yiming Hu | 12 | NA | 7 | 7 | 6 | 8 | 12 | 9 | NA | 9 | 12 | 8 | 11 | NA | 12 | NA | NA | NA | NA | NA | NA | NA | 0 | 12 | 0.6278 | 0.3424 | |
Ronald Schmidt | 10 | 10 | 5 | 9 | 6 | 8 | 12 | 10 | NA | 7 | 9 | 10 | NA | 8 | 13 | 11 | 15 | NA | 2 | 2 | 1 | NA | 0 | 18 | 0.6245 | 0.5110 | |
Matthew Olguin | 10 | 8 | 9 | 9 | 7 | 12 | 11 | 11 | 9 | 7 | 8 | 5 | 14 | 9 | 12 | 12 | 7 | NA | 3 | NA | NA | NA | 0 | 18 | 0.6221 | 0.5090 | |
Anthony Rockemore | 13 | 8 | 6 | 8 | 7 | NA | 8 | NA | NA | 9 | 9 | 9 | 12 | 10 | 12 | 9 | NA | 11 | NA | 2 | 1 | NA | 0 | 16 | 0.6175 | 0.4491 | |
Desmond Jenkins | 10 | 7 | 7 | NA | 7 | 12 | 8 | NA | NA | NA | NA | NA | 15 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 7 | 0.6168 | 0.1963 | |
Robert Lynch | 6 | 9 | 8 | 6 | 9 | 7 | 7 | 12 | NA | 9 | 7 | 8 | 15 | NA | 13 | 13 | 11 | 10 | NA | 3 | 1 | NA | 0 | 18 | 0.6160 | 0.5040 | |
Robert Martin | 7 | NA | 9 | 8 | 8 | 8 | 7 | NA | 8 | 7 | 7 | 9 | 11 | 8 | 11 | 13 | 15 | NA | 6 | 2 | 1 | NA | 0 | 18 | 0.6144 | 0.5027 | |
Diance Durand | 9 | 9 | 12 | 7 | 8 | 10 | 9 | 11 | 11 | 7 | 9 | 8 | 12 | NA | 11 | 7 | 10 | 11 | 2 | 3 | 0 | NA | 0 | 20 | 0.6125 | 0.5568 | |
Jordan Forwood | 11 | 8 | 6 | 11 | NA | 13 | NA | 10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | NA | NA | 0 | 7 | 0.6122 | 0.1948 | |
Jose Torres Mendoza | 12 | 8 | 8 | 8 | NA | NA | 8 | 9 | 10 | 11 | 8 | 7 | NA | 10 | NA | 11 | NA | NA | NA | NA | NA | NA | 0 | 12 | 0.6111 | 0.3333 | |
David Hadley | 13 | 10 | 8 | NA | 8 | NA | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 5 | 0.6104 | 0.1387 | |
Keisha Vasquez | 8 | 7 | 9 | 9 | 11 | 11 | 9 | 12 | 8 | 8 | NA | NA | 14 | NA | NA | 9 | NA | 7 | NA | NA | NA | NA | 0 | 13 | 0.6100 | 0.3605 | |
Kyle May | 10 | 8 | 5 | 6 | 8 | NA | 12 | 10 | 9 | 8 | 8 | 8 | 13 | 7 | 13 | 12 | NA | NA | NA | 3 | NA | NA | 0 | 16 | 0.6087 | 0.4427 | |
Gary Lawrence | 10 | 6 | 5 | 5 | 7 | 9 | 9 | 10 | 9 | 9 | 11 | 8 | 16 | 11 | 11 | 10 | 12 | 8 | NA | 3 | 0 | NA | 0 | 20 | 0.6079 | 0.5526 | |
Megan Fitzgerald | 8 | 11 | 9 | 10 | NA | NA | 8 | 10 | NA | NA | NA | 7 | 13 | 4 | 12 | NA | NA | NA | 4 | 3 | 1 | NA | 0 | 13 | 0.6061 | 0.3582 | |
Wayne Gokey | 13 | 7 | NA | 11 | NA | NA | 8 | NA | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 5 | 0.6026 | 0.1370 | |
Jack Wheeler | 9 | 6 | 5 | 10 | 8 | NA | 9 | 9 | 10 | 8 | 10 | 7 | 15 | 11 | 9 | 11 | NA | 10 | 3 | 2 | 1 | NA | 0 | 19 | 0.6024 | 0.5203 | |
Jonathan Knight | 13 | 10 | 9 | 6 | 7 | NA | 11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 6 | 0.6022 | 0.1642 | |
Kevin Green | 11 | 9 | NA | 8 | 7 | 12 | NA | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 6 | 0.5978 | 0.1630 | |
Derrick Elam | 13 | 9 | 8 | 11 | 7 | 10 | 8 | 9 | NA | NA | NA | 7 | NA | 7 | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 10 | 0.5973 | 0.2715 | |
Jeffrey Dusza | 11 | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 2 | 0.5938 | 0.0540 | |
Cherylynn Vidal | 13 | 9 | 8 | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 4 | 0.5938 | 0.1080 | |
Adam Konkle | 10 | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 2 | 0.5938 | 0.0540 | |
Thomas Cho | 10 | 6 | NA | 11 | 7 | 12 | NA | 8 | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 7 | 0.5888 | 0.1873 | |
Jason Miranda | 10 | 7 | 8 | NA | 9 | 11 | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 6 | 0.5824 | 0.1588 | |
Jennifer Wilson | 11 | 9 | 10 | 6 | NA | 7 | 11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 6 | 0.5806 | 0.1583 | |
Richard Conkle | 7 | 6 | 6 | 8 | 7 | 10 | 12 | 11 | 9 | NA | 8 | NA | NA | 10 | 9 | NA | 12 | 8 | 3 | 3 | 1 | NA | 0 | 17 | 0.5778 | 0.4465 | |
Joseph Martin | 10 | 7 | 8 | 8 | 8 | 10 | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 7 | 0.5607 | 0.1784 | |
Sheryl Claiborne-Smith | 11 | 7 | NA | NA | NA | 7 | 7 | 10 | 7 | 7 | 9 | 9 | 10 | 9 | NA | NA | NA | 8 | NA | 2 | 0 | NA | 0 | 14 | 0.5598 | 0.3562 | |
Min Choi | 10 | NA | 7 | NA | 8 | 7 | NA | 10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 6 | 0.5513 | 0.1504 | |
Lawrence Thuotte | 9 | 5 | 12 | NA | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 4 | 0.5484 | 0.0997 | |
Gabriel Quinones | 10 | 7 | 6 | 9 | NA | 11 | 8 | 7 | NA | NA | NA | 6 | NA | 9 | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 9 | 0.5407 | 0.2212 | |
Monte Henderson | 9 | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 2 | 0.5312 | 0.0483 | |
David Kim | 9 | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 2 | 0.5312 | 0.0483 | |
Jamie Ainsleigh-Wong | 9 | 8 | 9 | 9 | 8 | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 6 | 0.5217 | 0.1423 | |
Jay Kelly | 10 | 9 | 7 | 7 | 5 | 10 | 7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 7 | 0.5140 | 0.1635 | |
Zachary Brosemer | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.5000 | 0.0227 | |
Antonio Chapa | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.5000 | 0.0227 | |
Vincent Kandian | 9 | 8 | 8 | 7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 4 | 0.5000 | 0.0909 | |
Ashley Johnson | 9 | NA | 6 | NA | 6 | NA | NA | NA | NA | NA | 5 | 9 | 8 | NA | NA | NA | NA | NA | NA | NA | 1 | NA | 0 | 7 | 0.4835 | 0.1538 | |
Ashlyn Dortch | 9 | NA | NA | 8 | NA | 5 | 9 | 6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 5 | 0.4805 | 0.1092 | |
Gabrieal Feiling | 10 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | 0 | 3 | 0.4474 | 0.0610 | |
Jasprin Smith | 6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.3750 | 0.0170 | |
Robert Epps | NA | 6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | 0.3750 | 0.0170 |
Season Leaderboard (Season Percent) | ||||||
Week 22 | ||||||
Season Rank | Name | Donuts Won | Weeks Picked | Season Percent | Adj Season Percent | Season Trend |
---|---|---|---|---|---|---|
1 | Clayton Grimes | 0 | 1 | 0.8750 | 0.0398 | |
2 | Tanaysa Henderson | 0 | 1 | 0.8571 | 0.0390 | |
3 | Brittany Pillar | 2 | 15 | 0.7557 | 0.5152 | |
4 | Matthew Blair | 0 | 11 | 0.7531 | 0.3766 | |
5 | Brian Holder | 0 | 1 | 0.7500 | 0.0341 | |
5 | Sandra Carter | 0 | 1 | 0.7500 | 0.0341 | |
5 | Wallace Savage | 0 | 1 | 0.7500 | 0.0341 | |
8 | Michael Linder | 0 | 12 | 0.7312 | 0.3988 | |
9 | Aubrey Conn | 5 | 22 | 0.7298 | 0.7298 | |
10 | Robert Cunningham | 2 | 21 | 0.7286 | 0.6955 | |
11 | Steven Maisonneuve | 1 | 9 | 0.7231 | 0.2958 | |
12 | Michael Pacifico | 2 | 22 | 0.7158 | 0.7158 | |
13 | Robert Gelo | 2 | 22 | 0.7123 | 0.7123 | |
14 | Chester Todd | 1 | 19 | 0.7105 | 0.6136 | |
15 | Nathan Brown | 1 | 17 | 0.7094 | 0.5482 | |
16 | Patrick Tynan | 2 | 16 | 0.7054 | 0.5130 | |
17 | Chris Papageorge | 2 | 22 | 0.7053 | 0.7053 | |
17 | Marc Agne | 3 | 22 | 0.7053 | 0.7053 | |
19 | Randolph Tidd | 1 | 16 | 0.7025 | 0.5109 | |
20 | Gregory Brown | 2 | 16 | 0.7000 | 0.5091 | |
21 | Jeremy Krammes | 0 | 3 | 0.6957 | 0.0949 | |
22 | Christopher Sims | 4 | 22 | 0.6947 | 0.6947 | |
22 | Jeremy Stieler | 2 | 22 | 0.6947 | 0.6947 | |
24 | Jeremy Mounce | 0 | 9 | 0.6935 | 0.2837 | |
25 | Bradley Hobson | 1 | 20 | 0.6926 | 0.6296 | |
26 | Heather Kohler | 0 | 12 | 0.6923 | 0.3776 | |
27 | Jason Schattel | 2 | 22 | 0.6912 | 0.6912 | |
27 | Randy Dick | 1 | 22 | 0.6912 | 0.6912 | |
29 | Terrence Lee | 0 | 2 | 0.6897 | 0.0627 | |
30 | Daniel Gray | 0 | 1 | 0.6875 | 0.0312 | |
30 | Erik Neumann | 1 | 19 | 0.6875 | 0.5938 | |
30 | Ryan Wiggins | 1 | 3 | 0.6875 | 0.0938 | |
33 | Bruce Williams | 2 | 21 | 0.6852 | 0.6541 | |
34 | Anthony Bloss | 0 | 22 | 0.6842 | 0.6842 | |
34 | Nicole Dike | 2 | 22 | 0.6842 | 0.6842 | |
34 | Thomas Brenstuhl | 2 | 19 | 0.6842 | 0.5909 | |
37 | Karen Coleman | 0 | 15 | 0.6830 | 0.4657 | |
38 | Heather Ellenberger | 1 | 20 | 0.6828 | 0.6207 | |
39 | Bryson Scott | 1 | 17 | 0.6820 | 0.5270 | |
40 | William Schouviller | 1 | 21 | 0.6815 | 0.6505 | |
41 | Edward Ford | 2 | 22 | 0.6807 | 0.6807 | |
41 | Kevin Kehoe | 1 | 22 | 0.6807 | 0.6807 | |
43 | Jennifer Bouland | 0 | 17 | 0.6803 | 0.5257 | |
43 | Keven Talbert | 3 | 21 | 0.6803 | 0.6494 | |
45 | Nicholas Cinco | 1 | 20 | 0.6798 | 0.6180 | |
46 | Pablo Burgosramos | 2 | 21 | 0.6797 | 0.6488 | |
47 | David Dupree | 1 | 21 | 0.6790 | 0.6481 | |
48 | Kevin Buettner | 2 | 21 | 0.6766 | 0.6458 | |
49 | Matthew Schultz | 0 | 17 | 0.6758 | 0.5222 | |
50 | Brian Hollmann | 2 | 18 | 0.6742 | 0.5516 | |
51 | Daniel Baller | 1 | 22 | 0.6737 | 0.6737 | |
51 | Stephen Bush | 3 | 22 | 0.6737 | 0.6737 | |
53 | Ramar Williams | 2 | 21 | 0.6726 | 0.6420 | |
54 | Philip Driskill | 1 | 13 | 0.6720 | 0.3971 | |
55 | Scott Lefton | 0 | 19 | 0.6706 | 0.5792 | |
56 | Robert Sokol | 0 | 12 | 0.6705 | 0.3657 | |
57 | George Sweet | 2 | 22 | 0.6702 | 0.6702 | |
58 | Brayant Rivera | 0 | 19 | 0.6691 | 0.5779 | |
58 | Shawn Carden | 1 | 21 | 0.6691 | 0.6387 | |
60 | Darryle Sellers | 0 | 17 | 0.6680 | 0.5162 | |
61 | Ryan Cvik | 1 | 22 | 0.6667 | 0.6667 | |
61 | Zechariah Ziebarth | 2 | 20 | 0.6667 | 0.6061 | |
63 | Earl Dixon | 1 | 17 | 0.6652 | 0.5140 | |
64 | Rafael Torres | 0 | 20 | 0.6640 | 0.6036 | |
65 | Travis Delagardelle | 1 | 11 | 0.6627 | 0.3314 | |
66 | Daniel Halse | 0 | 16 | 0.6612 | 0.4809 | |
67 | David Plate | 0 | 18 | 0.6608 | 0.5407 | |
68 | Shaun Dahl | 1 | 17 | 0.6602 | 0.5102 | |
69 | Antonio Mitchell | 2 | 22 | 0.6596 | 0.6596 | |
69 | George Hall | 1 | 4 | 0.6596 | 0.1199 | |
71 | Karen Richardson | 2 | 20 | 0.6592 | 0.5993 | |
72 | Noah Gosswiller | 1 | 15 | 0.6584 | 0.4489 | |
73 | Ryan Baum | 0 | 13 | 0.6582 | 0.3889 | |
74 | Jonathon Leslein | 2 | 21 | 0.6580 | 0.6281 | |
75 | Paul Seitz | 1 | 18 | 0.6577 | 0.5381 | |
76 | Cade Martinez | 1 | 22 | 0.6561 | 0.6561 | |
76 | Montee Brown | 3 | 22 | 0.6561 | 0.6561 | |
78 | Michelle Fraterrigo | 1 | 17 | 0.6558 | 0.5068 | |
79 | Jennifer Arty | 1 | 18 | 0.6543 | 0.5353 | |
80 | George Mancini | 0 | 16 | 0.6542 | 0.4758 | |
81 | Michael Moss | 0 | 22 | 0.6526 | 0.6526 | |
81 | Richard Beeghley | 2 | 22 | 0.6526 | 0.6526 | |
83 | Steward Hogans | 3 | 17 | 0.6524 | 0.5041 | |
84 | Daniel Major | 1 | 19 | 0.6513 | 0.5625 | |
85 | Michael Branson | 1 | 21 | 0.6506 | 0.6210 | |
86 | Clevante Granville | 0 | 17 | 0.6500 | 0.5023 | |
87 | Christopher Mulcahy | 1 | 21 | 0.6494 | 0.6199 | |
88 | Pamela Augustine | 0 | 17 | 0.6486 | 0.5012 | |
89 | Nicholas Nguyen | 2 | 20 | 0.6482 | 0.5893 | |
90 | George Brown | 2 | 21 | 0.6479 | 0.6185 | |
91 | Jeffrey Rudderforth | 1 | 21 | 0.6468 | 0.6174 | |
91 | Kamar Morgan | 1 | 21 | 0.6468 | 0.6174 | |
93 | Brandon Parks | 0 | 15 | 0.6465 | 0.4408 | |
94 | Nahir Shepard | 1 | 18 | 0.6459 | 0.5285 | |
95 | Jeffrey Zornes | 0 | 21 | 0.6458 | 0.6164 | |
96 | Darvin Graham | 1 | 19 | 0.6456 | 0.5576 | |
96 | David Humes | 0 | 22 | 0.6456 | 0.6456 | |
98 | Michael Moore | 1 | 18 | 0.6453 | 0.5280 | |
99 | Brian Patterson | 1 | 20 | 0.6445 | 0.5859 | |
100 | Louie Renew | 2 | 21 | 0.6431 | 0.6139 | |
101 | Walter Archambo | 1 | 22 | 0.6421 | 0.6421 | |
102 | Joshua Tracey | 1 | 15 | 0.6416 | 0.4375 | |
103 | Jonathan Smith | 1 | 20 | 0.6392 | 0.5811 | |
104 | Rachel Follo | 4 | 22 | 0.6386 | 0.6386 | |
104 | Rachel Follo | 4 | 22 | 0.6386 | 0.6386 | |
106 | Vincent Scannelli | 0 | 20 | 0.6384 | 0.5804 | |
107 | Jason Jackson | 0 | 20 | 0.6381 | 0.5801 | |
108 | Bunnaro Sun | 0 | 19 | 0.6379 | 0.5509 | |
109 | Cheryl Brown | 1 | 20 | 0.6378 | 0.5798 | |
110 | Thomas Mccoy | 0 | 18 | 0.6360 | 0.5204 | |
111 | Paul Presti | 0 | 10 | 0.6358 | 0.2890 | |
112 | Anthony Brinson | 1 | 18 | 0.6356 | 0.5200 | |
113 | James Small | 0 | 20 | 0.6353 | 0.5775 | |
114 | Amy Asberry | 0 | 11 | 0.6347 | 0.3174 | |
115 | Tara Bridgett | 0 | 8 | 0.6320 | 0.2298 | |
116 | Trevor Macgavin | 1 | 22 | 0.6316 | 0.6316 | |
117 | Wayne Schofield | 2 | 21 | 0.6283 | 0.5997 | |
118 | Yiming Hu | 0 | 12 | 0.6278 | 0.3424 | |
119 | Ronald Schmidt | 1 | 18 | 0.6245 | 0.5110 | |
120 | Kristen White | 1 | 21 | 0.6237 | 0.5954 | |
121 | Matthew Olguin | 0 | 18 | 0.6221 | 0.5090 | |
122 | Terry Hardison | 1 | 20 | 0.6211 | 0.5646 | |
123 | Anthony Rockemore | 0 | 16 | 0.6175 | 0.4491 | |
124 | Desmond Jenkins | 0 | 7 | 0.6168 | 0.1963 | |
125 | Jared Kaanga | 0 | 20 | 0.6166 | 0.5605 | |
126 | Robert Lynch | 0 | 18 | 0.6160 | 0.5040 | |
127 | Robert Martin | 2 | 18 | 0.6144 | 0.5027 | |
128 | Melissa Printup | 1 | 22 | 0.6140 | 0.6140 | |
129 | Diance Durand | 1 | 20 | 0.6125 | 0.5568 | |
130 | Jordan Forwood | 0 | 7 | 0.6122 | 0.1948 | |
131 | Jose Torres Mendoza | 0 | 12 | 0.6111 | 0.3333 | |
132 | David Hadley | 0 | 5 | 0.6104 | 0.1387 | |
133 | Keisha Vasquez | 1 | 13 | 0.6100 | 0.3605 | |
134 | Kyle May | 0 | 16 | 0.6087 | 0.4427 | |
135 | Gary Lawrence | 1 | 20 | 0.6079 | 0.5526 | |
136 | Megan Fitzgerald | 0 | 13 | 0.6061 | 0.3582 | |
137 | Marcus Evans | 0 | 21 | 0.6059 | 0.5784 | |
138 | Kenneth Nielsen | 0 | 13 | 0.6049 | 0.3574 | |
139 | Wayne Gokey | 0 | 5 | 0.6026 | 0.1370 | |
140 | Jack Wheeler | 0 | 19 | 0.6024 | 0.5203 | |
141 | Jonathan Knight | 0 | 6 | 0.6022 | 0.1642 | |
142 | Ryan Shipley | 2 | 15 | 0.6000 | 0.4091 | |
143 | Kevin Green | 0 | 6 | 0.5978 | 0.1630 | |
144 | Derrick Elam | 0 | 10 | 0.5973 | 0.2715 | |
145 | Steven Webster | 1 | 17 | 0.5942 | 0.4592 | |
146 | Adam Konkle | 0 | 2 | 0.5938 | 0.0540 | |
146 | Cherylynn Vidal | 0 | 4 | 0.5938 | 0.1080 | |
146 | Jeffrey Dusza | 0 | 2 | 0.5938 | 0.0540 | |
149 | Thomas Cho | 0 | 7 | 0.5888 | 0.1873 | |
150 | Jason Miranda | 0 | 6 | 0.5824 | 0.1588 | |
151 | Jennifer Wilson | 0 | 6 | 0.5806 | 0.1583 | |
152 | Richard Conkle | 0 | 17 | 0.5778 | 0.4465 | |
153 | Joseph Martin | 0 | 7 | 0.5607 | 0.1784 | |
154 | Sheryl Claiborne-Smith | 0 | 14 | 0.5598 | 0.3562 | |
155 | Donald Park | 1 | 4 | 0.5532 | 0.1006 | |
156 | Min Choi | 0 | 6 | 0.5513 | 0.1504 | |
157 | Lawrence Thuotte | 1 | 4 | 0.5484 | 0.0997 | |
158 | Gabriel Quinones | 0 | 9 | 0.5407 | 0.2212 | |
159 | Akilah Gamble | 3 | 14 | 0.5318 | 0.3384 | |
160 | David Kim | 0 | 2 | 0.5312 | 0.0483 | |
160 | Monte Henderson | 0 | 2 | 0.5312 | 0.0483 | |
162 | Jamie Ainsleigh-Wong | 0 | 6 | 0.5217 | 0.1423 | |
163 | Andrew Gray | 1 | 18 | 0.5149 | 0.4213 | |
164 | Jay Kelly | 0 | 7 | 0.5140 | 0.1635 | |
165 | Antonio Chapa | 0 | 1 | 0.5000 | 0.0227 | |
165 | Vincent Kandian | 0 | 4 | 0.5000 | 0.0909 | |
165 | Zachary Brosemer | 0 | 1 | 0.5000 | 0.0227 | |
168 | Ashley Johnson | 0 | 7 | 0.4835 | 0.1538 | |
169 | Ashlyn Dortch | 0 | 5 | 0.4805 | 0.1092 | |
170 | Gabrieal Feiling | 0 | 3 | 0.4474 | 0.0610 | |
171 | Brenton Jones | 0 | 3 | 0.4286 | 0.0584 | |
172 | Jasprin Smith | 0 | 1 | 0.3750 | 0.0170 | |
172 | Robert Epps | 0 | 1 | 0.3750 | 0.0170 |
Season Leaderboard (Adjusted Season Percent) | ||||||
Week 22 | ||||||
Season Rank | Name | Donuts Won | Weeks Picked | Season Percent | Adj Season Percent | Season Trend |
---|---|---|---|---|---|---|
1 | Aubrey Conn | 5 | 22 | 0.7298 | 0.7298 | |
2 | Michael Pacifico | 2 | 22 | 0.7158 | 0.7158 | |
3 | Robert Gelo | 2 | 22 | 0.7123 | 0.7123 | |
4 | Chris Papageorge | 2 | 22 | 0.7053 | 0.7053 | |
4 | Marc Agne | 3 | 22 | 0.7053 | 0.7053 | |
6 | Robert Cunningham | 2 | 21 | 0.7286 | 0.6955 | |
7 | Christopher Sims | 4 | 22 | 0.6947 | 0.6947 | |
7 | Jeremy Stieler | 2 | 22 | 0.6947 | 0.6947 | |
9 | Jason Schattel | 2 | 22 | 0.6912 | 0.6912 | |
9 | Randy Dick | 1 | 22 | 0.6912 | 0.6912 | |
11 | Anthony Bloss | 0 | 22 | 0.6842 | 0.6842 | |
11 | Nicole Dike | 2 | 22 | 0.6842 | 0.6842 | |
13 | Edward Ford | 2 | 22 | 0.6807 | 0.6807 | |
13 | Kevin Kehoe | 1 | 22 | 0.6807 | 0.6807 | |
15 | Daniel Baller | 1 | 22 | 0.6737 | 0.6737 | |
15 | Stephen Bush | 3 | 22 | 0.6737 | 0.6737 | |
17 | George Sweet | 2 | 22 | 0.6702 | 0.6702 | |
18 | Ryan Cvik | 1 | 22 | 0.6667 | 0.6667 | |
19 | Antonio Mitchell | 2 | 22 | 0.6596 | 0.6596 | |
20 | Cade Martinez | 1 | 22 | 0.6561 | 0.6561 | |
20 | Montee Brown | 3 | 22 | 0.6561 | 0.6561 | |
22 | Bruce Williams | 2 | 21 | 0.6852 | 0.6541 | |
23 | Michael Moss | 0 | 22 | 0.6526 | 0.6526 | |
23 | Richard Beeghley | 2 | 22 | 0.6526 | 0.6526 | |
25 | William Schouviller | 1 | 21 | 0.6815 | 0.6505 | |
26 | Keven Talbert | 3 | 21 | 0.6803 | 0.6494 | |
27 | Pablo Burgosramos | 2 | 21 | 0.6797 | 0.6488 | |
28 | David Dupree | 1 | 21 | 0.6790 | 0.6481 | |
29 | Kevin Buettner | 2 | 21 | 0.6766 | 0.6458 | |
30 | David Humes | 0 | 22 | 0.6456 | 0.6456 | |
31 | Walter Archambo | 1 | 22 | 0.6421 | 0.6421 | |
32 | Ramar Williams | 2 | 21 | 0.6726 | 0.6420 | |
33 | Shawn Carden | 1 | 21 | 0.6691 | 0.6387 | |
34 | Rachel Follo | 4 | 22 | 0.6386 | 0.6386 | |
34 | Rachel Follo | 4 | 22 | 0.6386 | 0.6386 | |
36 | Trevor Macgavin | 1 | 22 | 0.6316 | 0.6316 | |
37 | Bradley Hobson | 1 | 20 | 0.6926 | 0.6296 | |
38 | Jonathon Leslein | 2 | 21 | 0.6580 | 0.6281 | |
39 | Michael Branson | 1 | 21 | 0.6506 | 0.6210 | |
40 | Heather Ellenberger | 1 | 20 | 0.6828 | 0.6207 | |
41 | Christopher Mulcahy | 1 | 21 | 0.6494 | 0.6199 | |
42 | George Brown | 2 | 21 | 0.6479 | 0.6185 | |
43 | Nicholas Cinco | 1 | 20 | 0.6798 | 0.6180 | |
44 | Jeffrey Rudderforth | 1 | 21 | 0.6468 | 0.6174 | |
44 | Kamar Morgan | 1 | 21 | 0.6468 | 0.6174 | |
46 | Jeffrey Zornes | 0 | 21 | 0.6458 | 0.6164 | |
47 | Melissa Printup | 1 | 22 | 0.6140 | 0.6140 | |
48 | Louie Renew | 2 | 21 | 0.6431 | 0.6139 | |
49 | Chester Todd | 1 | 19 | 0.7105 | 0.6136 | |
50 | Zechariah Ziebarth | 2 | 20 | 0.6667 | 0.6061 | |
51 | Rafael Torres | 0 | 20 | 0.6640 | 0.6036 | |
52 | Wayne Schofield | 2 | 21 | 0.6283 | 0.5997 | |
53 | Karen Richardson | 2 | 20 | 0.6592 | 0.5993 | |
54 | Kristen White | 1 | 21 | 0.6237 | 0.5954 | |
55 | Erik Neumann | 1 | 19 | 0.6875 | 0.5938 | |
56 | Thomas Brenstuhl | 2 | 19 | 0.6842 | 0.5909 | |
57 | Nicholas Nguyen | 2 | 20 | 0.6482 | 0.5893 | |
58 | Brian Patterson | 1 | 20 | 0.6445 | 0.5859 | |
59 | Jonathan Smith | 1 | 20 | 0.6392 | 0.5811 | |
60 | Vincent Scannelli | 0 | 20 | 0.6384 | 0.5804 | |
61 | Jason Jackson | 0 | 20 | 0.6381 | 0.5801 | |
62 | Cheryl Brown | 1 | 20 | 0.6378 | 0.5798 | |
63 | Scott Lefton | 0 | 19 | 0.6706 | 0.5792 | |
64 | Marcus Evans | 0 | 21 | 0.6059 | 0.5784 | |
65 | Brayant Rivera | 0 | 19 | 0.6691 | 0.5779 | |
66 | James Small | 0 | 20 | 0.6353 | 0.5775 | |
67 | Terry Hardison | 1 | 20 | 0.6211 | 0.5646 | |
68 | Daniel Major | 1 | 19 | 0.6513 | 0.5625 | |
69 | Jared Kaanga | 0 | 20 | 0.6166 | 0.5605 | |
70 | Darvin Graham | 1 | 19 | 0.6456 | 0.5576 | |
71 | Diance Durand | 1 | 20 | 0.6125 | 0.5568 | |
72 | Gary Lawrence | 1 | 20 | 0.6079 | 0.5526 | |
73 | Brian Hollmann | 2 | 18 | 0.6742 | 0.5516 | |
74 | Bunnaro Sun | 0 | 19 | 0.6379 | 0.5509 | |
75 | Nathan Brown | 1 | 17 | 0.7094 | 0.5482 | |
76 | David Plate | 0 | 18 | 0.6608 | 0.5407 | |
77 | Paul Seitz | 1 | 18 | 0.6577 | 0.5381 | |
78 | Jennifer Arty | 1 | 18 | 0.6543 | 0.5353 | |
79 | Nahir Shepard | 1 | 18 | 0.6459 | 0.5285 | |
80 | Michael Moore | 1 | 18 | 0.6453 | 0.5280 | |
81 | Bryson Scott | 1 | 17 | 0.6820 | 0.5270 | |
82 | Jennifer Bouland | 0 | 17 | 0.6803 | 0.5257 | |
83 | Matthew Schultz | 0 | 17 | 0.6758 | 0.5222 | |
84 | Thomas Mccoy | 0 | 18 | 0.6360 | 0.5204 | |
85 | Jack Wheeler | 0 | 19 | 0.6024 | 0.5203 | |
86 | Anthony Brinson | 1 | 18 | 0.6356 | 0.5200 | |
87 | Darryle Sellers | 0 | 17 | 0.6680 | 0.5162 | |
88 | Brittany Pillar | 2 | 15 | 0.7557 | 0.5152 | |
89 | Earl Dixon | 1 | 17 | 0.6652 | 0.5140 | |
90 | Patrick Tynan | 2 | 16 | 0.7054 | 0.5130 | |
91 | Ronald Schmidt | 1 | 18 | 0.6245 | 0.5110 | |
92 | Randolph Tidd | 1 | 16 | 0.7025 | 0.5109 | |
93 | Shaun Dahl | 1 | 17 | 0.6602 | 0.5102 | |
94 | Gregory Brown | 2 | 16 | 0.7000 | 0.5091 | |
95 | Matthew Olguin | 0 | 18 | 0.6221 | 0.5090 | |
96 | Michelle Fraterrigo | 1 | 17 | 0.6558 | 0.5068 | |
97 | Steward Hogans | 3 | 17 | 0.6524 | 0.5041 | |
98 | Robert Lynch | 0 | 18 | 0.6160 | 0.5040 | |
99 | Robert Martin | 2 | 18 | 0.6144 | 0.5027 | |
100 | Clevante Granville | 0 | 17 | 0.6500 | 0.5023 | |
101 | Pamela Augustine | 0 | 17 | 0.6486 | 0.5012 | |
102 | Daniel Halse | 0 | 16 | 0.6612 | 0.4809 | |
103 | George Mancini | 0 | 16 | 0.6542 | 0.4758 | |
104 | Karen Coleman | 0 | 15 | 0.6830 | 0.4657 | |
105 | Steven Webster | 1 | 17 | 0.5942 | 0.4592 | |
106 | Anthony Rockemore | 0 | 16 | 0.6175 | 0.4491 | |
107 | Noah Gosswiller | 1 | 15 | 0.6584 | 0.4489 | |
108 | Richard Conkle | 0 | 17 | 0.5778 | 0.4465 | |
109 | Kyle May | 0 | 16 | 0.6087 | 0.4427 | |
110 | Brandon Parks | 0 | 15 | 0.6465 | 0.4408 | |
111 | Joshua Tracey | 1 | 15 | 0.6416 | 0.4375 | |
112 | Andrew Gray | 1 | 18 | 0.5149 | 0.4213 | |
113 | Ryan Shipley | 2 | 15 | 0.6000 | 0.4091 | |
114 | Michael Linder | 0 | 12 | 0.7312 | 0.3988 | |
115 | Philip Driskill | 1 | 13 | 0.6720 | 0.3971 | |
116 | Ryan Baum | 0 | 13 | 0.6582 | 0.3889 | |
117 | Heather Kohler | 0 | 12 | 0.6923 | 0.3776 | |
118 | Matthew Blair | 0 | 11 | 0.7531 | 0.3766 | |
119 | Robert Sokol | 0 | 12 | 0.6705 | 0.3657 | |
120 | Keisha Vasquez | 1 | 13 | 0.6100 | 0.3605 | |
121 | Megan Fitzgerald | 0 | 13 | 0.6061 | 0.3582 | |
122 | Kenneth Nielsen | 0 | 13 | 0.6049 | 0.3574 | |
123 | Sheryl Claiborne-Smith | 0 | 14 | 0.5598 | 0.3562 | |
124 | Yiming Hu | 0 | 12 | 0.6278 | 0.3424 | |
125 | Akilah Gamble | 3 | 14 | 0.5318 | 0.3384 | |
126 | Jose Torres Mendoza | 0 | 12 | 0.6111 | 0.3333 | |
127 | Travis Delagardelle | 1 | 11 | 0.6627 | 0.3314 | |
128 | Amy Asberry | 0 | 11 | 0.6347 | 0.3174 | |
129 | Steven Maisonneuve | 1 | 9 | 0.7231 | 0.2958 | |
130 | Paul Presti | 0 | 10 | 0.6358 | 0.2890 | |
131 | Jeremy Mounce | 0 | 9 | 0.6935 | 0.2837 | |
132 | Derrick Elam | 0 | 10 | 0.5973 | 0.2715 | |
133 | Tara Bridgett | 0 | 8 | 0.6320 | 0.2298 | |
134 | Gabriel Quinones | 0 | 9 | 0.5407 | 0.2212 | |
135 | Desmond Jenkins | 0 | 7 | 0.6168 | 0.1963 | |
136 | Jordan Forwood | 0 | 7 | 0.6122 | 0.1948 | |
137 | Thomas Cho | 0 | 7 | 0.5888 | 0.1873 | |
138 | Joseph Martin | 0 | 7 | 0.5607 | 0.1784 | |
139 | Jonathan Knight | 0 | 6 | 0.6022 | 0.1642 | |
140 | Jay Kelly | 0 | 7 | 0.5140 | 0.1635 | |
141 | Kevin Green | 0 | 6 | 0.5978 | 0.1630 | |
142 | Jason Miranda | 0 | 6 | 0.5824 | 0.1588 | |
143 | Jennifer Wilson | 0 | 6 | 0.5806 | 0.1583 | |
144 | Ashley Johnson | 0 | 7 | 0.4835 | 0.1538 | |
145 | Min Choi | 0 | 6 | 0.5513 | 0.1504 | |
146 | Jamie Ainsleigh-Wong | 0 | 6 | 0.5217 | 0.1423 | |
147 | David Hadley | 0 | 5 | 0.6104 | 0.1387 | |
148 | Wayne Gokey | 0 | 5 | 0.6026 | 0.1370 | |
149 | George Hall | 1 | 4 | 0.6596 | 0.1199 | |
150 | Ashlyn Dortch | 0 | 5 | 0.4805 | 0.1092 | |
151 | Cherylynn Vidal | 0 | 4 | 0.5938 | 0.1080 | |
152 | Donald Park | 1 | 4 | 0.5532 | 0.1006 | |
153 | Lawrence Thuotte | 1 | 4 | 0.5484 | 0.0997 | |
154 | Jeremy Krammes | 0 | 3 | 0.6957 | 0.0949 | |
155 | Ryan Wiggins | 1 | 3 | 0.6875 | 0.0938 | |
156 | Vincent Kandian | 0 | 4 | 0.5000 | 0.0909 | |
157 | Terrence Lee | 0 | 2 | 0.6897 | 0.0627 | |
158 | Gabrieal Feiling | 0 | 3 | 0.4474 | 0.0610 | |
159 | Brenton Jones | 0 | 3 | 0.4286 | 0.0584 | |
160 | Adam Konkle | 0 | 2 | 0.5938 | 0.0540 | |
160 | Jeffrey Dusza | 0 | 2 | 0.5938 | 0.0540 | |
162 | David Kim | 0 | 2 | 0.5312 | 0.0483 | |
162 | Monte Henderson | 0 | 2 | 0.5312 | 0.0483 | |
164 | Clayton Grimes | 0 | 1 | 0.8750 | 0.0398 | |
165 | Tanaysa Henderson | 0 | 1 | 0.8571 | 0.0390 | |
166 | Brian Holder | 0 | 1 | 0.7500 | 0.0341 | |
166 | Sandra Carter | 0 | 1 | 0.7500 | 0.0341 | |
166 | Wallace Savage | 0 | 1 | 0.7500 | 0.0341 | |
169 | Daniel Gray | 0 | 1 | 0.6875 | 0.0312 | |
170 | Antonio Chapa | 0 | 1 | 0.5000 | 0.0227 | |
170 | Zachary Brosemer | 0 | 1 | 0.5000 | 0.0227 | |
172 | Jasprin Smith | 0 | 1 | 0.3750 | 0.0170 | |
172 | Robert Epps | 0 | 1 | 0.3750 | 0.0170 |
---
title: "2024 NFL Moneyline Picks"
output:
flexdashboard::flex_dashboard:
theme:
version: 4
bootswatch: spacelab
orientation: rows
vertical_layout: fill
social: ["menu"]
source_code: embed
navbar:
- { title: "Created by: Daniel Baller", icon: "fa-github", href: "https://github.com/danielpballer" }
---
```{r setup, include=FALSE}
# source_code: embed
library(flexdashboard)
library(tidyverse)
library(data.table)
library(formattable)
library(ggpubr)
library(ggrepel)
library(gt)
library(glue)
library(ggthemes)
library(hrbrthemes)
library(sparkline)
library(plotly)
library(htmlwidgets)
library(mdthemes)
library(ggtext)
library(ggnewscale)
library(DT)
source("./Functions/functions2.R")
thematic::thematic_rmd(font = "auto")
# Remove line 211 before next season.
```
```{r Reading in our picks files, include=FALSE}
current_week = 22 #Set what week it is
week_1 = read_csv("./CSV_Data_Files/2024 NFL Week 1.csv") %>%
mutate(Name = str_to_title(Name))
week_2 = read_csv("./CSV_Data_Files/2024 NFL Week 2.csv")%>%
mutate(Name = str_to_title(Name))
week_3 = read_csv("./CSV_Data_Files/2024 NFL Week 3.csv")%>%
mutate(Name = str_to_title(Name))
week_4 = read_csv("./CSV_Data_Files/2024 NFL Week 4.csv")%>%
mutate(Name = str_to_title(Name))
week_5 = read_csv("./CSV_Data_Files/2024 NFL Week 5.csv")%>%
mutate(Name = str_to_title(Name))
week_6 = read_csv("./CSV_Data_Files/2024 NFL Week 6.csv")%>%
mutate(Name = str_to_title(Name))
week_7 = read_csv("./CSV_Data_Files/2024 NFL Week 7.csv")%>%
mutate(Name = str_to_title(Name))
week_8 = read_csv("./CSV_Data_Files/2024 NFL Week 8.csv")%>%
mutate(Name = str_to_title(Name))
week_9 = read_csv("./CSV_Data_Files/2024 NFL Week 9.csv")%>%
mutate(Name = str_to_title(Name))
week_10 = read_csv("./CSV_Data_Files/2024 NFL Week 10.csv")%>%
mutate(Name = str_to_title(Name))
week_11 = read_csv("./CSV_Data_Files/2024 NFL Week 11.csv")%>%
mutate(Name = str_to_title(Name))
week_12 = read_csv("./CSV_Data_Files/2024 NFL Week 12.csv")%>%
mutate(Name = str_to_title(Name))
week_13 = read_csv("./CSV_Data_Files/2024 NFL Week 13.csv")%>%
mutate(Name = str_to_title(Name))
week_14 = read_csv("./CSV_Data_Files/2024 NFL Week 14.csv")%>%
mutate(Name = str_to_title(Name))
week_15 = read_csv("./CSV_Data_Files/2024 NFL Week 15.csv")%>%
mutate(Name = str_to_title(Name))
week_16 = read_csv("./CSV_Data_Files/2024 NFL Week 16.csv")%>%
mutate(Name = str_to_title(Name))
week_17 = read_csv("./CSV_Data_Files/2024 NFL Week 17.csv")%>%
mutate(Name = str_to_title(Name))
week_18 = read_csv("./CSV_Data_Files/2024 NFL Week 18.csv")%>%
mutate(Name = str_to_title(Name))
week_19 = read_csv("./CSV_Data_Files/2024 NFL Wild Card.csv")%>%
mutate(Name = str_to_title(Name))
week_20 = read_csv("./CSV_Data_Files/2024 NFL Divisional Week.csv")%>%
mutate(Name = str_to_title(Name))
week_21 = read_csv("./CSV_Data_Files/2024 NFL Conference Round.csv")%>%
mutate(Name = str_to_title(Name))
week_22 = read_csv("./CSV_Data_Files/2024 NFL Super Bowl.csv")%>%
mutate(Name = str_to_title(Name))
#reading in scores
Scores = read_csv(glue::glue("./CSV_Data_Files/NFL_Scores_{current_week}.csv"))
#reading in CBS Prediction Records
cbs = read_csv(glue::glue("./CSV_Data_Files/CBS_Experts_{current_week}.csv")) %>%
mutate(Percent = round(Percent,4))
cbs_season = read_csv(glue::glue("./CSV_Data_Files/CBS_Experts_Season_{current_week}.csv"))
#reading in ESPN Prediction Records
espn = read_csv(glue::glue("./CSV_Data_Files/ESPN_Experts_{current_week}.csv"))%>%
mutate(Percent = round(Percent,4))
espn_season = read_csv(glue::glue("./CSV_Data_Files/ESPN_Experts_Season_{current_week}.csv"))%>%
mutate(Percent = round(Percent,4))
#Odds not working for the 2024 season. Need to fix scrape code for next year.
#Reading in the moneyline odds for each team and cleaning the team names
# odds_wk1 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_1.csv"))
# odds_wk2 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_2.csv"))
# odds_wk3 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_3.csv"))
# odds_wk4 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_4.csv"))
# odds_wk5 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_5.csv"))
# odds_wk6 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_6.csv"))
# odds_wk7 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_7.csv"))
# odds_wk8 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_8.csv"))
# odds_wk9 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_9.csv"))
# odds_wk10 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_10.csv"))
# odds_wk11 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_11.csv"))
# odds_wk12 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_12.csv"))
# odds_wk13 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_13.csv"))
# odds_wk14 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_14.csv"))
# odds_wk15 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_15.csv"))
# odds_wk16 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_16.csv"))
# odds_wk17 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_17.csv"))
# odds_wk18 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_18.csv"))
# odds_wk19 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_19.csv"))
# odds_wk20 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_20.csv"))
# odds_wk21 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_21.csv"))
# odds_wk22 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_22.csv"))
####################UPDATE THESE###############################
inst.picks = list(week_1, week_2, week_3, week_4, week_5, week_6, week_7, week_8 , week_9, week_10, week_11, week_12, week_13, week_14, week_15, week_16, week_17, week_18, week_19, week_20, week_21, week_22) #add in the additional weeks
#odds = rbind(odds_wk1, odds_wk2, odds_wk3, odds_wk4, odds_wk5, odds_wk6, odds_wk7, odds_wk8,
# odds_wk9, odds_wk10, odds_wk11, odds_wk12) #add in the additional weeks
####################END OF UPDATE##############################
weeks = as.list(seq(1:current_week)) #creating a list of each week number
```
```{r read in scores clean data, include=FALSE}
#Cleaning Odds Data
# cl_odds = odds_cleaning(odds)
#Cleaning scores data
Scores = cleaning2(Scores)
#creating a list of winners for each week
winners = map(weeks, weekly_winners)
#creating a vector of this weeks winners
this_week = pull(winners[[length(winners)]])
#Getting the number of games for each week
weekly_number_of_games = map_dbl(weeks, week_number_games)
```
```{r Group Predictions, include=FALSE}
#Creating the list of everyones predictions each week.
games = map(inst.picks, games_fn)
#Creating the prediction table.
pred_table = map(games, pred_table_fn)
#Adding who won to the predictions
with_winners = map2(pred_table, winners, adding_winners)
#Creating results for each week.
results = map2(with_winners,weekly_number_of_games, results_fn)
```
```{r Displaying Group Results, echo=FALSE}
#Displaying the group results
inst_group_table = results[[length(results)]] %>% gt() %>%
cols_align(
align = "center") %>%
tab_header(
title = md("This Week's Predictions"),
#subtitle = md(glue("Week {length(results)}"))
) %>%
tab_style(
style = cell_text(color = "red", weight = "bold"),
locations = cells_body(
columns = c(Correct),
rows = Correct =="No"
)) %>%
tab_style(
style = cell_text(color = "green", weight = "bold"),
locations = cells_body(
columns = c(Correct),
rows = Correct =="Yes"
)) %>%
tab_options(
data_row.padding = px(3),
container.height = "100%"
)
```
```{r Weekly and season Group Results, include=FALSE}
# Printing the weekly and season win percentage
#how many games correct, incorrect, and not picked each week
weekly_group_correct = map(results, weekly_group_correct_fn)
#how many games were picked each week
weekly_games_picked = map2(weekly_group_correct, weekly_number_of_games, weekly_games_picked_fn)
#Calculating the number of correct picks for each week
weekly_group_correct_picks = map(weekly_group_correct, weekly_group_correct_picks_fn)
# Code to manually hard code in week where we get 0 games correct
# ##### Remove this line before next season
weekly_group_correct_picks[[21]]=0
#Calculating weekly win percentage
weekly_win_percentage = map2(weekly_group_correct_picks, weekly_games_picked, weekly_win_percentage_fn)
#Calculating season win percentage
season_win_percentage = round(sum(unlist(weekly_group_correct_picks))/sum(unlist(weekly_games_picked)),4)
#Calculating number of games picked this season
season_games = sum(unlist(weekly_games_picked))
#calculating season wins
season_wins = sum(unlist(weekly_group_correct_picks))
#calculating the number of people who picked this week
Total = dim(inst.picks[[length(weeks)]])[1]
```
```{r plotting group results, include=FALSE}
#Previous Weeks
group_season_for_plotting = unlist(weekly_win_percentage) %>% as.data.frame() %>%
rename(`Win Percentage` = ".") %>%
add_column(Week = unlist(weeks))
```
```{r Plotting the group results, echo=FALSE}
inst_group_season_plot = group_season_for_plotting %>%
ggplot(aes(x = as.factor(Week), y = `Win Percentage`))+
geom_point()+
geom_path(aes(x = Week))+
ylim(c(0, 1)) +
xlab("NFL Week") +
ylab("Correct Percentage")+
ggtitle("Weekly Group Correct Percentage")+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5, size = 18))
```
```{r beating cbs week, include=FALSE}
#Creating a list of correct percentages for each week.
cbs_weekly_percent = map(weeks, cbs_percent)
#Creating a list of how many cbs experts we beat each week.
cbs_experts_beat = map2(cbs_weekly_percent, weekly_win_percentage, experts_beat)
#Creating a list of how many cbs experts picked each week.
cbs_experts_total = map(cbs_weekly_percent, experts_tot)
```
```{r beating cbs season, include=FALSE}
#Creating a list of correct percentages for each week.
cbs_season_percent = map(weeks, cbs_season_percent)
#Creating a list of how many cbs experts we beat each week.
cbs_experts_beat_season = map2(cbs_season_percent, season_win_percentage, experts_beat)
#Creating a list of how many cbs experts picked each week.
cbs_experts_season_total = map(cbs_season_percent, experts_tot)
```
```{r beating ESPN week, include=FALSE}
#Creating a list of correct percentages for each week.
espn_weekly_percent = map(weeks, espn_percent)
#Creating a list of how many cbs experts we beat each week.
espn_experts_beat = map2(espn_weekly_percent, weekly_win_percentage, experts_beat)
#Creating a list of how many cbs experts picked each week.
espn_experts_total = map(espn_weekly_percent, experts_tot)
```
```{r beating ESPN season, include=FALSE}
#Creating a list of correct percentages for each week.
espn_season_percent = map(weeks, espn_season_percent)
#Creating a list of how many cbs experts we beat each week.
espn_experts_beat_season = map2(espn_season_percent, season_win_percentage, experts_beat)
#Creating a list of how many cbs experts picked each week.
espn_experts_season_total = map(espn_season_percent, experts_tot)
```
```{r individual results, include=FALSE}
#Creating a list of individual results for each week.
weekly_indiv = pmap(list(inst.picks, winners, weeks), indiv_weekly_pred)
#Combining each week into one dataframe and calculating percentage Correct for this week.
full_season = weekly_indiv %>% reduce(full_join, by = "Name") %>%
mutate(Percent = round(pull(.[,ncol(.)]/weekly_number_of_games[[length(weekly_number_of_games)]]),4))
#Creating a dataframe with only the weekly picks
a = full_season %>% select(starts_with("Week"))
#Creating a vector of how many weeks each person picked over the season
tot_week = NULL
help = NULL
for (i in 1:dim(a)[1]){
for(j in 1:length(a)){
help[j] = ifelse(is.na(a[i,j])==T,0,1)
tot_week[i] = sum(help)
}
}
#Creating a vector of how many games each person picked over the season
tot_picks= NULL
help = NULL
for (i in 1:dim(a)[1]){
for(j in 1:length(a)){
help[j] = unlist(weekly_games_picked)[j]*ifelse(is.na(a[i,j])==T,0,1)
tot_picks[i] = sum(help)
}
}
#Creatign a vector of how many games each person picked correct over the season
tot_correct = NULL
help = NULL
for (i in 1:dim(a)[1]){
tot_correct[i] = sum(a[i,], na.rm = T)
}
#adding how many weeks each person picked, season correct percentage, and adjusted season percentag to the data frame and sorting the data
indiv_disp = full_season %>% add_column(`Weeks Picked` = tot_week) %>%
add_column(tot_correct)%>%
add_column(tot_picks)%>%
mutate(`Season Percent` = round(tot_correct/tot_picks,4))%>%
mutate(`Adj Season Percent` = round(`Season Percent`*(tot_week/length(a)),4)) %>%
select(-tot_correct, -tot_picks) %>%
arrange(desc(Percent), desc(`Season Percent`)) %>%
mutate(Percent = ifelse(is.na(Percent)==T, 0, Percent))
```
```{r individual percentages, include=FALSE}
#Calculating individual percentages for each week.
weekly_indiv_percent = map2(weekly_indiv, as.list(weekly_number_of_games), indiv_percent) %>% reduce(full_join, by = "Name")
weekly_indiv_percent_plot = weekly_indiv_percent %>%
pivot_longer(cols = starts_with("Week"), names_to = "Week", values_to = "Percent")%>%
mutate(Percent = ifelse(is.na(Percent)==T, 0, Percent)) %>%
mutate(Week = as.factor(Week))
levels = NULL
for(i in 1:length(weeks)){
levels[i] = glue("Week {i}")
}
weekly_indiv_percent_plot = weekly_indiv_percent_plot %>%
mutate(Week = factor(Week, levels))
```
```{r sparklines, include=FALSE}
#adding sparklines
plot_group = function(name, df){
plot_object =
ggplot(data = df,
aes(x = as.factor(Week), y=Percent, group = 1))+
geom_path(size = 7)+
scale_y_continuous(limits = c(0,1))+
theme_void()+
theme(legend.position = "none")
return(plot_object)
}
sparklines =
weekly_indiv_percent_plot %>%
group_by(Name) %>%
nest() %>%
mutate(plot = map2(Name, data, plot_group)) %>%
select(-data)
indiv_disp_2 = indiv_disp %>%
inner_join(sparklines, by = "Name") %>%
mutate(`Season Trend` = NA)
```
```{r Printing Individual Table2, echo=FALSE}
# Printing the individual Table
indiv_table = indiv_disp_2 %>% gt() %>%
cols_align(
align = "center") %>%
tab_header(
title = md("Individual Results"),
subtitle = md(glue("Week {length(weeks)}"))
) %>%
tab_style(
style = cell_text(color = "red", weight = "bold"),
locations = cells_body(
columns = c(Percent),
rows = Percent<.5
)) %>%
tab_style(
style = cell_text(color = "green", weight = "bold"),
locations = cells_body(
columns = c(Percent),
rows = Percent>.5
)) %>%
tab_style(
style = cell_text(color = "red", weight = "bold"),
locations = cells_body(
columns = c(`Season Percent`),
rows = `Season Percent`<.5
)) %>%
tab_style(
style = cell_text(color = "green", weight = "bold"),
locations = cells_body(
columns = c(`Season Percent`),
rows = `Season Percent`>.5
))%>%
tab_style(
style = cell_text(color = "red", weight = "bold"),
locations = cells_body(
columns = c(`Adj Season Percent`),
rows = `Adj Season Percent`<.5
)) %>%
tab_style(
style = cell_text(color = "green", weight = "bold"),
locations = cells_body(
columns = c(`Adj Season Percent`),
rows = `Adj Season Percent`>.5
)) %>%
tab_options(
container.width = pct(100),
data_row.padding = px(1),
container.height = "100%"
) %>%
tab_spanner(
label = "Weekly # Correct",
columns = starts_with(c("Week "))
) %>%
text_transform(
locations = cells_body(c(`Season Trend`)),
fn = function(x){
map(indiv_disp_2$plot, ggplot_image, height = px(30), aspect_ratio = 4)
}) %>%
cols_hide(c(plot))
indiv_winners = indiv_disp_2 %>% filter(Percent == max(Percent)) %>% select(Name) %>% pull() %>% paste(collapse = ", ")
indiv_season = indiv_disp_2 %>% filter(`Season Percent` == max(`Season Percent`)) %>% select(Name) %>% pull() %>% paste(collapse = ", ")
indiv_season_adj = indiv_disp_2 %>% filter(`Adj Season Percent` == max(`Adj Season Percent`)) %>% select(Name) %>% pull()%>% paste(collapse = ", ")
```
```{r Printing Season Leaderboard, echo=FALSE}
# Printing the Season Leaderboard
season_leaderboard_disp = indiv_disp_2 %>% select(Name, starts_with("Week ")) %>%
pivot_longer(starts_with("Week"),names_to = "Week", values_to = "Correct") %>%
group_by(Week) %>%
mutate(Correct = case_when(is.na(Correct)==T~0,
TRUE~Correct)) %>%
mutate(Donut = case_when(Correct==max(Correct)~1,
TRUE~0)) %>%
ungroup() %>%
group_by(Name) %>%
summarise(`Donuts Won` = sum(Donut)) %>%
#mutate(`Donuts Won` = strrep("award,", Donuts)) %>%
right_join(.,indiv_disp_2) %>%
select(-starts_with("Week "), -Percent) %>%
mutate(`Season Rank` = min_rank(desc(`Season Percent`)),.before = Name) %>%
arrange(`Season Rank`)
season_leaderboard = season_leaderboard_disp %>%
gt() %>%
cols_align(
align = "center") %>%
tab_header(
title = md("Season Leaderboard (Season Percent)"),
subtitle = md(glue("Week {length(weeks)}"))
) %>%
# fmt_icon(
# columns = `Donuts Won`,
# fill_color = "gold",
# ) %>%
tab_style(
style = cell_text(color = "red", weight = "bold"),
locations = cells_body(
columns = c(`Season Percent`),
rows = `Season Percent`<.5
)) %>%
tab_style(
style = cell_text(color = "green", weight = "bold"),
locations = cells_body(
columns = c(`Season Percent`),
rows = `Season Percent`>.5
))%>%
tab_style(
style = cell_text(color = "red", weight = "bold"),
locations = cells_body(
columns = c(`Adj Season Percent`),
rows = `Adj Season Percent`<.5
)) %>%
tab_style(
style = cell_text(color = "green", weight = "bold"),
locations = cells_body(
columns = c(`Adj Season Percent`),
rows = `Adj Season Percent`>.5
)) %>%
tab_options(
container.width = pct(100),
data_row.padding = px(1),
container.height = "100%"
) %>%
tab_spanner(
label = "Weekly # Correct",
columns = starts_with(c("Week "))
) %>%
text_transform(
locations = cells_body(c(`Season Trend`)),
fn = function(x){
map(season_leaderboard_disp$plot, ggplot_image, height = px(30), aspect_ratio = 4)
}) %>%
cols_hide(columns = c(plot))
```
```{r Printing Adj Season Leaderboard, echo=FALSE}
# Printing the Adj Season Leaderboard
adj_season_leaderboard_disp = indiv_disp_2 %>% select(Name, starts_with("Week ")) %>%
pivot_longer(starts_with("Week"),names_to = "Week", values_to = "Correct") %>%
group_by(Week) %>%
mutate(Correct = case_when(is.na(Correct)==T~0,
TRUE~Correct)) %>%
mutate(Donut = case_when(Correct==max(Correct)~1,
TRUE~0)) %>%
ungroup() %>%
group_by(Name) %>%
summarise(`Donuts Won` = sum(Donut)) %>%
#mutate(`Donuts Won` = strrep("award,", Donuts)) %>%
right_join(.,indiv_disp_2) %>%
select(-starts_with("Week "), -Percent) %>%
mutate(`Season Rank` = min_rank(desc(`Adj Season Percent`)),.before = Name) %>%
arrange(`Season Rank`)
adj_season_leaderboard = adj_season_leaderboard_disp %>%
gt() %>%
cols_align(
align = "center") %>%
tab_header(
title = md("Season Leaderboard (Adjusted Season Percent)"),
subtitle = md(glue("Week {length(weeks)}"))
) %>%
# fmt_icon(
# columns = `Donuts Won`,
# fill_color = "gold",
# ) %>%
tab_style(
style = cell_text(color = "red", weight = "bold"),
locations = cells_body(
columns = c(`Season Percent`),
rows = `Season Percent`<.5
)) %>%
tab_style(
style = cell_text(color = "green", weight = "bold"),
locations = cells_body(
columns = c(`Season Percent`),
rows = `Season Percent`>.5
))%>%
tab_style(
style = cell_text(color = "red", weight = "bold"),
locations = cells_body(
columns = c(`Adj Season Percent`),
rows = `Adj Season Percent`<.5
)) %>%
tab_style(
style = cell_text(color = "green", weight = "bold"),
locations = cells_body(
columns = c(`Adj Season Percent`),
rows = `Adj Season Percent`>.5
)) %>%
tab_options(
container.width = pct(100),
data_row.padding = px(1),
container.height = "100%"
) %>%
tab_spanner(
label = "Weekly # Correct",
columns = starts_with(c("Week "))
) %>%
text_transform(
locations = cells_body(c(`Season Trend`)),
fn = function(x){
map(adj_season_leaderboard_disp$plot, ggplot_image, height = px(30), aspect_ratio = 4)
}) %>%
cols_hide(columns = c(plot))
```
```{r instructor formattable, echo=FALSE}
improvement_formatter <-
formatter("span",
style = x ~ formattable::style(
font.weight = "bold",
color = ifelse(x > .5, "green", ifelse(x < .5, "red", "black"))),
x ~ icontext(ifelse(x == max(x), "star", ""), x))
indiv_disp_3 = indiv_disp_2 %>% select(-plot)
indiv_disp_3$`Season Trend` = apply(indiv_disp_3[,2:(1+length(weeks))], 1, FUN = function(x) as.character(htmltools::as.tags(sparkline(as.numeric(x), type = "line", chartRangeMin = 0, chartRangeMax = 1, fillColor = "white"))))
indiv_table_2 = as.htmlwidget(formattable(indiv_disp_3,
align = c("l", rep("c", NROW(indiv_disp_3)-1)),
list(`Season Percent` = color_bar("#FA614B"),
`Season Percent`= improvement_formatter,
`Adj Season Percent`= improvement_formatter)))
indiv_table_2$dependencies = c(indiv_table_2$dependencies, htmlwidgets:::widget_dependencies("sparkline", "sparkline"))
```
```{r Plotting individual results over the season2, eval=FALSE, include=FALSE, out.width="100%"}
#Creating the individual plot.
inst_indiv_plots = weekly_indiv_percent_plot %>%
ggplot(aes(x = factor(Week), y = Percent, color = Name))+
geom_point()+
geom_path(aes(x = as.factor(Week), y = Percent, color = Name,
group = Name))+
ylim(c(0, 1)) +
labs(x = "NFL Week",
y = "Correct Percentage",
title = "Weekly Individual Correct Percentage")+
facet_wrap(~Name)+
theme_classic()+
theme(legend.position = "none",
plot.title = element_text(hjust = 0.5, size = 18),
axis.text.x=element_text(angle =45, vjust = 1, hjust = 1))
```
```{r data for data page}
inst.data = map2(inst.picks, weeks, disp_data) %>% bind_rows()
```
```{r fivethirtyeight}
inst_538 = map(results, five38) %>% unlist() %>% sum()
```
```{r pregame, eval=FALSE, include=FALSE}
#Predictions for the week
#Creating the list of group predictions each week.
games = map(inst.picks, games_fn)
#Creating the prediction table.
pred_table = map(games, pred_table_fn)
#Printing table of instructor predictions
pred_table[[length(pred_table)]] %>% mutate(Game = row_number()) %>%
rename(`Votes For` = votes_for, `Votes Against` = votes_against) %>%
gt() %>%
cols_align(
align = "center") %>%
tab_header(
title = md("This Week's Predictions"),
subtitle = md(glue("Week {length(weeks)}"))
) %>%
tab_options(
data_row.padding = px(3)
)
```
Group Predictions
==========================================================================
Sidebar {.sidebar}
-------------------------------------
#### CBS Sports
<font size="4">
This week we beat or tied `r cbs_experts_beat[[length(weeks)]]` of `r cbs_experts_total[[length(weeks)]]` CBS Sports' Experts.
For the season we are currently beating or tied with `r cbs_experts_beat_season[[length(weeks)]]` of `r cbs_experts_season_total[[length(weeks)]]` CBS Sports' Experts.
</font>
#### ESPN
<font size="4">
We also beat or tied `r espn_experts_beat[[length(weeks)]]` of `r espn_experts_total[[length(weeks)]]` ESPN Experts.
For the season we are currently beating or tied with `r espn_experts_beat_season[[length(weeks)]]` of `r espn_experts_season_total[[length(weeks)]]` ESPN Experts.
</font>
Row
--------------------------------------
### Win percentage for the week
```{r}
inst_rate <- weekly_win_percentage[[length(weekly_win_percentage)]]*100
gauge(inst_rate, min = 0, max = 100, symbol = '%', gaugeSectors(
success = c(55, 100), warning = c(40, 54), danger = c(0, 39)
))
```
### Season Win Percentage
```{r}
inst_season <- season_win_percentage*100
gauge(inst_season, min = 0, max = 100, symbol = '%', gaugeSectors(
success = c(55, 100), warning = c(40, 54), danger = c(0, 39)
))
```
### Games Correct
```{r}
valueBox(value = season_wins,icon = "fa-trophy",caption = "Correct Games this Season")
```
### Games Picked
```{r}
valueBox(value = season_games,icon = "fa-clipboard-list",caption = "Games Picked this Season")
```
### Number of predictions
```{r}
valueBox(value = Total,icon = "fa-users",caption = "Predictions this week")
```
Row
--------------------------------------
###
```{r}
inst_group_table
```
###
```{r}
ggplotly(inst_group_season_plot) %>%
layout(title = list(y = .93, xref = "plot"),
margin = list(t = 40))
```
Individual Predictions
==========================================================================
Sidebar {.sidebar}
-------------------------------------
#### Best Picks of the Week.
<font size="4">
`r indiv_winners`
</font>
#### Best Season Correct Percentage
<font size="4">
`r indiv_season`
</font>
#### Best Adjusted Season Correct Percentage
<font size="4">
`r indiv_season_adj`
* Adjusted season percentage accounts for the number of weeks picked.
</font>
row {.tabset}
--------------------------------------
### Individual Table
```{r}
indiv_table
```
<!--
### Individual Table2
```{r, out.height="100%"}
indiv_table_2
```
-->
<!--
### Individual Plots
```{r, out.width="100%"}
#ggplotly(inst_indiv_plots)
```
-->
### Season Leaderboard
```{r, out.width="100%"}
season_leaderboard
```
### Adjusted Season Leaderboard
```{r, out.width="100%"}
adj_season_leaderboard
```
Data
==========================================================================
```{r}
datatable(
inst.data, extensions = 'Buttons', options = list(
dom = 'Blfrtip',
buttons = c('copy', 'csv', 'excel', 'pdf', 'print'),
lengthMenue = list( c(10, 25, 50, 100, -1), c(10, 25, 50, 100, "All") )
)
)
```