Group Predictions

Row

Win percentage for the week

Season Win Percentage

Games Correct

172

Games Picked

273

Number of predictions

12

Row

This Week's Predictions
Week 21
Game Prediction Winner Correct Correct Votes Correct Percent
1 Philadelphia Eagles Philadelphia Eagles Yes 10 0.8333
2 Cincinnati Bengals Kansas City Chiefs No 5 0.4167

Individual Predictions

row

Individual Table

Individual Results
Week 21
Name Weekly # Correct Percent Weeks Picked Season Percent Adj Season Percent Season Trend
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20 Week 21
Jeremy Reynolds 9 11 8 11 11 7 9 11 9 6 11 11 11 8 10 10 11 11 4 3 2 1.0 21 0.6740 0.6740
Gabriel Costa 9 10 7 6 12 11 10 7 9 7 9 8 9 9 13 8 10 10 5 2 2 1.0 21 0.6337 0.6337
Josephine Cammack 10 7 5 9 10 7 7 9 9 6 9 10 9 8 9 11 11 10 4 3 2 1.0 21 0.6044 0.6044
Margaret Reynolds 9 9 6 9 8 5 9 8 9 13 7 8 10 7 9 10 11 8 4 3 2 1.0 21 0.6007 0.6007
David Bierbrauer 8 8 8 11 10 NA 8 11 10 6 13 11 10 10 10 10 12 NA 5 3 1 0.5 19 0.6790 0.6143
Daniel Baller 11 6 5 14 12 9 8 12 10 8 13 10 10 7 11 11 8 12 3 3 1 0.5 21 0.6740 0.6740
Ira Crofford 9 9 8 10 10 8 9 8 9 9 10 11 13 7 12 11 11 11 5 3 1 0.5 21 0.6740 0.6740
James Jones 11 8 9 11 8 7 NA 10 9 8 11 11 10 7 9 11 11 10 4 3 1 0.5 20 0.6475 0.6167
Patrick Mugg 8 8 6 9 8 7 8 11 8 7 9 11 10 8 12 10 NA 11 5 3 1 0.5 20 0.6202 0.5907
Kevin Cummiskey 7 11 3 7 10 8 9 9 9 7 10 9 10 6 11 8 10 10 3 3 1 0.5 21 0.5897 0.5897
Margaret Wieczorek 10 5 10 5 10 7 10 9 8 4 9 NA 9 8 10 9 9 11 5 2 1 0.5 20 0.5875 0.5595
Jonathan Roginski 10 8 8 11 12 7 9 9 9 7 9 10 11 8 11 11 11 8 5 3 0 0.0 21 0.6484 0.6484
Shane Clark 9 10 9 14 11 7 9 9 9 7 10 10 11 7 NA 9 NA NA 5 2 NA 0.0 17 0.6549 0.5302
Welvin Lucero 8 NA NA NA 8 7 NA NA NA NA 8 NA 9 8 NA 12 11 NA 5 2 NA 0.0 10 0.6190 0.2948
Tina Hartley 9 7 9 8 8 6 12 11 10 6 6 11 9 8 8 9 NA 8 NA 3 NA 0.0 18 0.5920 0.5074
Nicholas Reisweber 6 9 NA 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.0 3 0.5111 0.0730
James Sherrell 10 7 8 8 8 6 5 7 6 5 9 NA 5 6 7 NA NA NA 2 NA NA 0.0 15 0.4853 0.3466

Individual Plots

Data

---
title: "2022 NFL Moneyline Picks"
output: 
  flexdashboard::flex_dashboard:
    theme:
      version: 4
      bootswatch: spacelab
    orientation: rows
    vertical_layout: fill
    social: ["menu"]
    source_code: embed
    navbar:
      - { title: "Created by: Daniel Baller", icon: "fa-github", href: "https://github.com/danielpballer"  }
---


```{r setup, include=FALSE}
#    source_code: embed
library(flexdashboard)
library(tidyverse)
library(data.table)
library(formattable)
library(ggpubr)
library(ggrepel)
library(gt)
library(glue)
library(ggthemes)
library(hrbrthemes)
library(sparkline)
library(plotly)
library(htmlwidgets)
library(mdthemes)
library(ggtext)
library(ggnewscale)
library(DT)
source("./Functions/functions2.R")

thematic::thematic_rmd(font = "auto")

```

```{r Reading in our picks files, include=FALSE}
current_week = 21 #Set what week it is
week_1 = read_csv("./CSV_Data_Files/2022 NFL Week 1.csv")
week_2 = read_csv("./CSV_Data_Files/2022 NFL Week 2.csv")
week_3 = read_csv("./CSV_Data_Files/2022 NFL Week 3.csv")
week_4 = read_csv("./CSV_Data_Files/2022 NFL Week 4.csv")
week_5 = read_csv("./CSV_Data_Files/2022 NFL Week 5.csv")
week_6 = read_csv("./CSV_Data_Files/2022 NFL Week 6.csv")
week_7 = read_csv("./CSV_Data_Files/2022 NFL Week 7.csv")
week_8 = read_csv("./CSV_Data_Files/2022 NFL Week 8.csv")
week_9 = read_csv("./CSV_Data_Files/2022 NFL Week 9.csv")
week_10 = read_csv("./CSV_Data_Files/2022 NFL Week 10.csv")
week_11 = read_csv("./CSV_Data_Files/2022 NFL Week 11.csv")
week_12 = read_csv("./CSV_Data_Files/2022 NFL Week 12.csv")
week_13 = read_csv("./CSV_Data_Files/2022 NFL Week 13.csv")
week_14 = read_csv("./CSV_Data_Files/2022 NFL Week 14.csv")
week_15 = read_csv("./CSV_Data_Files/2022 NFL Week 15.csv")
week_16 = read_csv("./CSV_Data_Files/2022 NFL Week 16.csv")
week_17 = read_csv("./CSV_Data_Files/2022 NFL Week 17.csv")
week_18 = read_csv("./CSV_Data_Files/2022 NFL Week 18.csv")
week_19 = read_csv("./CSV_Data_Files/2022 NFL Wild Card.csv")
week_20 = read_csv("./CSV_Data_Files/2022 NFL Divisional Round.csv")
week_21 = read_csv("./CSV_Data_Files/2022 NFL Conference Round.csv")
# week_22 = read_csv("./CSV_Data_Files/2022 NFL Super Bowl.csv")

#reading in scores
Scores = read_csv(glue::glue("./CSV_Data_Files/NFL_Scores_{current_week}.csv")) 

#reading in CBS Prediction Records
cbs = read_csv(glue::glue("./CSV_Data_Files/CBS_Experts_{current_week}.csv")) %>% 
  mutate(Percent = round(Percent,4))
cbs_season = read_csv(glue::glue("./CSV_Data_Files/CBS_Experts_Season_{current_week}.csv"))

#reading in ESPN Prediction Records
espn = read_csv(glue::glue("./CSV_Data_Files/ESPN_Experts_{current_week}.csv"))%>% 
  mutate(Percent = round(Percent,4))
espn_season = read_csv(glue::glue("./CSV_Data_Files/ESPN_Experts_Season_{current_week}.csv"))%>% 
  mutate(Percent = round(Percent,4))

#Odds not working for the 2022 season.  Need to fix scrape code for next year.
#Reading in the moneyline odds for each team and cleaning the team names
# odds_wk1 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_1.csv"))
# odds_wk2 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_2.csv"))
# odds_wk3 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_3.csv"))
# odds_wk4 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_4.csv"))
# odds_wk5 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_5.csv"))
# odds_wk6 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_6.csv"))
# odds_wk7 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_7.csv"))
# odds_wk8 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_8.csv"))
# odds_wk9 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_9.csv"))
# odds_wk10 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_10.csv"))
# odds_wk11 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_11.csv"))
# odds_wk12 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_12.csv"))
# odds_wk13 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_13.csv"))
# odds_wk14 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_14.csv"))
# odds_wk15 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_15.csv"))
# odds_wk16 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_16.csv"))
# odds_wk17 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_17.csv"))
# odds_wk18 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_18.csv"))
# odds_wk19 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_19.csv"))
# odds_wk20 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_20.csv"))
# odds_wk21 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_21.csv"))
# odds_wk22 = read_csv(glue::glue("./CSV_Data_Files/Moneyline_Odds_22.csv"))

####################UPDATE THESE###############################
inst.picks = list(week_1, week_2, week_3, week_4, week_5, week_6, week_7, week_8, week_9, week_10, week_11,
                  week_12, week_13, week_14, week_15, week_16, week_17, week_18, week_19,
                  week_20, week_21) #add in the additional weeks
# odds = rbind(odds_wk1, odds_wk2, odds_wk3, odds_wk4, odds_wk5, odds_wk6, odds_wk7, odds_wk8,
#              odds_wk9, odds_wk10, odds_wk11, odds_wk12) #add in the additional weeks
####################END OF UPDATE##############################

weeks = as.list(seq(1:current_week)) #creating a list of each week number
```

```{r read in scores clean data, include=FALSE}
#Cleaning Odds Data
# cl_odds = odds_cleaning(odds)

#Cleaning scores data
Scores = cleaning2(Scores)

#creating a list of winners for each week
winners = map(weeks, weekly_winners)

#creating a vector of this weeks winners
this_week = pull(winners[[length(winners)]])  

#Getting the number of games for each week
weekly_number_of_games = map_dbl(weeks, week_number_games)
```

```{r Group Predictions, include=FALSE}
#Creating the list of everyones predictions each week.
games = map(inst.picks, games_fn)

#Creating the prediction table.  
pred_table = map(games, pred_table_fn)

#Adding who won to the predictions
with_winners = map2(pred_table, winners, adding_winners)

#Creating results for each week.
results = map2(with_winners,weekly_number_of_games, results_fn)
```


```{r Displaying Group Results, echo=FALSE}
#Displaying the group results

inst_group_table = results[[length(results)]] %>% gt() %>% 
  cols_align(
    align = "center") %>% 
   tab_header(
    title = md("This Week's Predictions"),
    subtitle = md(glue("Week {length(results)}"))
    ) %>% 
   tab_style(
    style = cell_text(color = "red", weight = "bold"),
    locations = cells_body(
      columns = c(Correct),
      rows = Correct =="No"
    )) %>% 
   tab_style(
    style = cell_text(color = "green", weight = "bold"),
    locations = cells_body(
      columns = c(Correct),
      rows = Correct =="Yes"
    )) %>% 
  tab_options(
    data_row.padding = px(3),
    container.height = "100%"
   )
```

```{r Weekly and season Group Results, include=FALSE}
# Printing the weekly and season win percentage     

#how many games correct, incorrect, and not picked each week
weekly_group_correct = map(results, weekly_group_correct_fn)  

#how many games were picked each week
weekly_games_picked = map2(weekly_group_correct, weekly_number_of_games, weekly_games_picked_fn)

#Calculating the number of correct picks for each week
weekly_group_correct_picks = map(weekly_group_correct, weekly_group_correct_picks_fn)

#Calculating weekly win percentage
weekly_win_percentage = map2(weekly_group_correct_picks, weekly_games_picked, weekly_win_percentage_fn)

#Calculating season win percentage
season_win_percentage = round(sum(unlist(weekly_group_correct_picks))/sum(unlist(weekly_games_picked)),4)

#Calculating number of games picked this season
season_games = sum(unlist(weekly_games_picked))

#calculating season wins
season_wins = sum(unlist(weekly_group_correct_picks))

#calculating the number of people who picked this week
Total = dim(inst.picks[[length(weeks)]])[1]
```

```{r plotting group results, include=FALSE}
#Previous Weeks
group_season_for_plotting = unlist(weekly_win_percentage) %>% as.data.frame() %>% 
  rename(`Win Percentage` = ".") %>% 
  add_column(Week = unlist(weeks))
```

```{r Plotting the group results, echo=FALSE}
inst_group_season_plot = group_season_for_plotting %>% 
ggplot(aes(x = as.factor(Week), y = `Win Percentage`))+
  geom_point()+
  geom_path(aes(x = Week))+
  ylim(c(0, 1)) +
  xlab("NFL Week") + 
  ylab("Correct Percentage")+
  ggtitle("Weekly Group Correct Percentage")+
  theme_classic()+
  theme(plot.title = element_text(hjust = 0.5, size = 18))
```

```{r instructor beating cbs week, include=FALSE}
#Creating a list of correct percentages for each week.
cbs_weekly_percent = map(weeks, cbs_percent)

#Creating a list of how many cbs experts we beat each week.
cbs_experts_beat = map2(cbs_weekly_percent, weekly_win_percentage, experts_beat)

#Creating a list of how many cbs experts picked each week.  
cbs_experts_total = map(cbs_weekly_percent, experts_tot)
```

```{r instructor beating cbs season, include=FALSE}
#Creating a list of correct percentages for each week.
cbs_season_percent = map(weeks, cbs_season_percent)

#Creating a list of how many cbs experts we beat each week.
cbs_experts_beat_season = map2(cbs_season_percent, season_win_percentage, experts_beat)

#Creating a list of how many cbs experts picked each week.  
cbs_experts_season_total = map(cbs_season_percent, experts_tot)
```

```{r instructor beating ESPN week, include=FALSE}
#Creating a list of correct percentages for each week.
espn_weekly_percent = map(weeks, espn_percent)

#Creating a list of how many cbs experts we beat each week.
espn_experts_beat = map2(espn_weekly_percent, weekly_win_percentage, experts_beat)

#Creating a list of how many cbs experts picked each week.  
espn_experts_total = map(espn_weekly_percent, experts_tot)
```

```{r instructor beating ESPN season, include=FALSE}
#Creating a list of correct percentages for each week.
espn_season_percent = map(weeks, espn_season_percent)

#Creating a list of how many cbs experts we beat each week.
espn_experts_beat_season = map2(espn_season_percent, season_win_percentage, experts_beat)

#Creating a list of how many cbs experts picked each week.  
espn_experts_season_total = map(espn_season_percent, experts_tot)
```

```{r individual results, include=FALSE}
#Creating a list of individual results for each week.
weekly_indiv = pmap(list(inst.picks, winners, weeks), indiv_weekly_pred)

#Combining each week into one dataframe and calculating percentage Correct for this week.  
full_season = weekly_indiv %>% reduce(full_join, by = "Name") %>% 
  mutate(Percent = round(pull(.[,ncol(.)]/weekly_number_of_games[[length(weekly_number_of_games)]]),4)) 

#Creating a dataframe with only the weekly picks
a = full_season %>% select(starts_with("Week"))

#Creating a vector of how many weeks each person picked over the season
tot_week = NULL
help = NULL
for (i in 1:dim(a)[1]){
  for(j in 1:length(a)){
    help[j] = ifelse(is.na(a[i,j])==T,0,1)
    tot_week[i] = sum(help)
  }
}

#Creating a vector of how many games each person picked over the season
tot_picks= NULL
help = NULL
for (i in 1:dim(a)[1]){
  for(j in 1:length(a)){
    help[j] = unlist(weekly_games_picked)[j]*ifelse(is.na(a[i,j])==T,0,1)
    tot_picks[i] = sum(help)
  }
}

#Creatign a vector of how many games each person picked correct over the season
tot_correct = NULL
help = NULL
for (i in 1:dim(a)[1]){
  tot_correct[i] = sum(a[i,], na.rm = T)
}

#adding how many weeks each person picked, season correct percentage, and adjusted season percentag to the data frame and sorting the data
indiv_disp = full_season %>% add_column(`Weeks Picked` = tot_week) %>%
  add_column(tot_correct)%>%
  add_column(tot_picks)%>%
  mutate(`Season Percent` = round(tot_correct/tot_picks,4))%>%
  mutate(`Adj Season Percent` = round(`Season Percent`*(tot_week/length(a)),4)) %>%
  select(-tot_correct, -tot_picks) %>%
  arrange(desc(Percent), desc(`Season Percent`)) %>%
  mutate(Percent = ifelse(is.na(Percent)==T, 0, Percent))
```

```{r individual percentages, include=FALSE}
#Calculating individual percentages for each week.
weekly_indiv_percent = map2(weekly_indiv, as.list(weekly_number_of_games), indiv_percent) %>% reduce(full_join, by = "Name")

weekly_indiv_percent_plot = weekly_indiv_percent %>% 
  pivot_longer(cols = starts_with("Week"), names_to = "Week", values_to = "Percent")%>%
  mutate(Percent = ifelse(is.na(Percent)==T, 0, Percent)) %>% 
  mutate(Week = as.factor(Week))

levels = NULL
for(i in 1:length(weeks)){
  levels[i] = glue("Week {i}")  
}

weekly_indiv_percent_plot = weekly_indiv_percent_plot %>%
  mutate(Week = factor(Week, levels))
```

```{r sparklines, include=FALSE}
#adding sparklines
plot_group = function(name, df){
  plot_object = 
    ggplot(data = df,
           aes(x = as.factor(Week), y=Percent, group = 1))+
    geom_path(size = 7)+
    scale_y_continuous(limits = c(0,1))+
    theme_void()+
    theme(legend.position = "none")
  return(plot_object)
}

sparklines = 
  weekly_indiv_percent_plot %>% 
  group_by(Name) %>% 
  nest() %>% 
  mutate(plot = map2(Name, data, plot_group)) %>% 
  select(-data)
  
indiv_disp_2 = indiv_disp %>% 
  inner_join(sparklines, by = "Name") %>% 
  mutate(`Season Trend` = NA)
```

```{r Printing Individual Table2, echo=FALSE}
# Printing the individual Table
indiv_table = indiv_disp_2 %>% gt() %>% 
  cols_align(
    align = "center") %>% 
   tab_header(
    title = md("Individual Results"),
    subtitle = md(glue("Week {length(weeks)}"))
    ) %>% 
   tab_style(
    style = cell_text(color = "red", weight = "bold"),
    locations = cells_body(
      columns = c(Percent),
      rows = Percent<.5
    )) %>% 
   tab_style(
    style = cell_text(color = "green", weight = "bold"),
    locations = cells_body(
      columns = c(Percent),
      rows = Percent>.5
    )) %>% 
     tab_style(
    style = cell_text(color = "red", weight = "bold"),
    locations = cells_body(
      columns = c(`Season Percent`),
      rows = `Season Percent`<.5
    )) %>% 
   tab_style(
    style = cell_text(color = "green", weight = "bold"),
    locations = cells_body(
      columns = c(`Season Percent`),
      rows = `Season Percent`>.5
    ))%>% 
     tab_style(
    style = cell_text(color = "red", weight = "bold"),
    locations = cells_body(
      columns = c(`Adj Season Percent`),
      rows = `Adj Season Percent`<.5
    )) %>% 
   tab_style(
    style = cell_text(color = "green", weight = "bold"),
    locations = cells_body(
      columns = c(`Adj Season Percent`),
      rows = `Adj Season Percent`>.5
    )) %>% 
  tab_options(
    container.width = pct(100),
    data_row.padding = px(1),
    container.height = "100%"
   ) %>%
    tab_spanner(
    label = "Weekly # Correct",
    columns = starts_with(c("Week "))
  ) %>% 
  text_transform(
    locations = cells_body(c(`Season Trend`)),
    fn = function(x){
      map(indiv_disp_2$plot, ggplot_image, height = px(30), aspect_ratio = 4)
                 }) %>%
  cols_hide(c(plot))

indiv_winners = indiv_disp_2 %>% filter(Percent == max(Percent)) %>% select(Name) %>% pull() %>% paste(collapse = ", ")
indiv_season = indiv_disp_2 %>% filter(`Season Percent` == max(`Season Percent`)) %>% select(Name) %>% pull() %>% paste(collapse = ", ")
indiv_season_adj = indiv_disp_2 %>% filter(`Adj Season Percent` == max(`Adj Season Percent`)) %>% select(Name) %>% pull()%>% paste(collapse = ", ")
```

```{r instructor formattable, echo=FALSE}
improvement_formatter <- 
  formatter("span", 
            style = x ~ formattable::style(
              font.weight = "bold", 
              color = ifelse(x > .5, "green", ifelse(x < .5, "red", "black"))),
             x ~ icontext(ifelse(x == max(x), "star", ""), x))

indiv_disp_3 = indiv_disp_2 %>% select(-plot)
indiv_disp_3$`Season Trend` = apply(indiv_disp_3[,2:(1+length(weeks))], 1, FUN = function(x) as.character(htmltools::as.tags(sparkline(as.numeric(x), type = "line", chartRangeMin = 0, chartRangeMax = 1, fillColor = "white"))))

indiv_table_2 = as.htmlwidget(formattable(indiv_disp_3, 
                                align = c("l", rep("c", NROW(indiv_disp_3)-1)),
              list(`Season Percent` = color_bar("#FA614B"),
              `Season Percent`= improvement_formatter,
              `Adj Season Percent`= improvement_formatter)))
              
indiv_table_2$dependencies = c(indiv_table_2$dependencies, htmlwidgets:::widget_dependencies("sparkline", "sparkline"))
```

```{r Plotting individual results over the season2, echo=FALSE, out.width = "100%"}
#Creating the individual plot.  
inst_indiv_plots = weekly_indiv_percent_plot %>% 
  ggplot(aes(x = factor(Week), y = Percent, color = Name))+
  geom_point()+
  geom_path(aes(x = as.factor(Week), y = Percent, color = Name, 
                group = Name))+
  ylim(c(0, 1)) +
  labs(x = "NFL Week", 
       y = "Correct Percentage", 
       title = "Weekly Individual Correct Percentage")+
  facet_wrap(~Name)+
  theme_classic()+
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5, size = 18),
        axis.text.x=element_text(angle =45, vjust = 1, hjust = 1))
```

<!--
```{r Plotting individual results over the season, include=FALSE, out.width="100%"}
#Creating the individual plot.  
indiv_plot_comb = weekly_indiv_percent %>% 
  pivot_longer(cols = starts_with("Week"), names_to = "Week", values_to = "Percent") %>% 
  mutate(Percent = ifelse(is.na(Percent)==T, 0, Percent)) %>% 
  #group_by(Name) %>% 
  ggplot(aes(x = as.factor(Week), y = Percent, color = Name))+
  geom_point()+
  geom_line(aes(x = as.factor(Week), y = Percent, color = Name, 
                group = Name))+
  ylim(c(0, 1)) +
  labs(x = "NFL Week", 
       y = "Correct Percentage", 
       title = "Weekly Individual Correct Percentage")+
  theme_classic()+
  theme(#legend.position = "none",
        plot.title = element_text(hjust = 0.5, size = 18))
```
-->


```{r data for data page}
inst.data = map2(inst.picks, weeks, disp_data) %>% bind_rows()
```


```{r fivethirtyeight}
inst_538 = map(results, five38) %>% unlist() %>% sum()
```

```{r pregame, eval=FALSE, include=FALSE}
#Predictions for the week

#Creating the list of group predictions each week.
games = map(inst.picks, games_fn)

#Creating the prediction table.  
pred_table = map(games, pred_table_fn)

#Printing table of instructor predictions
pred_table[[length(pred_table)]] %>% mutate(Game = row_number()) %>% 
  rename(`Votes For` = votes_for, `Votes Against` = votes_against) %>% 
  gt() %>% 
  cols_align(
    align = "center") %>% 
   tab_header(
    title = md("This Week's Predictions"),
    subtitle = md(glue("Week {length(weeks)}"))
    ) %>% 
   tab_options(
    data_row.padding = px(3)
   )
```

Group Predictions
==========================================================================

Sidebar {.sidebar} 
-------------------------------------
#### CBS Sports

<font size="4">

This week we beat or tied `r cbs_experts_beat[[length(weeks)]]` of `r cbs_experts_total[[length(weeks)]]` CBS Sports' Experts.

For the season we are currently beating or tied with `r cbs_experts_beat_season[[length(weeks)]]` of `r cbs_experts_season_total[[length(weeks)]]` CBS Sports' Experts.
 
 </font>


#### ESPN

<font size="4">

We also beat or tied `r espn_experts_beat[[length(weeks)]]` of `r espn_experts_total[[length(weeks)]]` ESPN Experts.
 
For the season we are currently beating or tied with `r espn_experts_beat_season[[length(weeks)]]` of `r espn_experts_season_total[[length(weeks)]]` ESPN Experts.

</font>

Row
--------------------------------------

### Win percentage for the week

```{r}
inst_rate <- weekly_win_percentage[[length(weekly_win_percentage)]]*100
gauge(inst_rate, min = 0, max = 100, symbol = '%', gaugeSectors(
  success = c(55, 100), warning = c(40, 54), danger = c(0, 39)
))
```

### Season Win Percentage

```{r}
inst_season <- season_win_percentage*100
gauge(inst_season, min = 0, max = 100, symbol = '%', gaugeSectors(
  success = c(55, 100), warning = c(40, 54), danger = c(0, 39)
))
```

### Games Correct
```{r}
valueBox(value = season_wins,icon = "fa-trophy",caption = "Correct Games this Season")
```

### Games Picked
```{r}
valueBox(value = season_games,icon = "fa-clipboard-list",caption = "Games Picked this Season")
```

### Number of predictions
```{r}
valueBox(value = Total,icon = "fa-users",caption = "Predictions this week")
```

Row
--------------------------------------

### 

```{r}
inst_group_table
```

### 

```{r}
ggplotly(inst_group_season_plot) %>% 
  layout(title = list(y = .93, xref = "plot"),
         margin = list(t = 40))
```

Individual Predictions
==========================================================================


Sidebar {.sidebar} 
-------------------------------------

#### Best Picks of the Week.

<font size="4">

 `r indiv_winners`
 
 </font>
 
#### Best Season Correct Percentage
<font size="4">

`r indiv_season`
 
 </font>

#### Best Adjusted Season Correct Percentage
<font size="4">

`r indiv_season_adj`

 * Adjusted season percentage accounts for the number of weeks picked.
 
 </font>

row {.tabset}
--------------------------------------

### Individual Table
```{r}
indiv_table
```

<!--
### Individual Table2

```{r, out.height="100%"}
indiv_table_2
```
-->
### Individual Plots
```{r, out.width="100%"}
ggplotly(inst_indiv_plots)
```


Data
==========================================================================

```{r}
datatable(
  inst.data, extensions = 'Buttons', options = list(
    dom = 'Blfrtip',
    buttons = c('copy', 'csv', 'excel', 'pdf', 'print'),
    lengthMenue = list( c(10, 25, 50, 100, -1), c(10, 25, 50, 100, "All") )
  )
)
```